AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C4 Calculus (Answers)

Name:

M

```
                        C4-Calculus
MEI, OCR, AQA, Edexcel
```

1. Evaluate the following integrals by expressing the integrand in partial fractions. Remember to include a constant of integration:
(a) $\int \frac{1}{(x+1)(x+2)} d x=\ln (x+1)-\ln (x+2)+c$.
(b) $\int \frac{x}{(x+1)(x+3)} d x=\frac{3}{2} \ln (x+3)-\frac{1}{2} \ln (x+1)+c$.
(c) $\int \frac{x^{2}}{(x+1)(x+2)} d x=x+\ln (x+1)-4 \ln (x+2)+c$.
(d) $\int \frac{1}{(x+1)(x+2)(x+3)} d x=\frac{1}{2} \ln (x+1)-\ln (x+2)+\frac{1}{2} \ln (x+3)+c$.
(e) $\int \frac{x^{3}}{(x-4)(x+2)} d x=\frac{1}{6}\left[3\left(x^{2}+4 x-32\right)+64 \ln (x-4)+8 \ln (x+2)\right]+c$.
(f) $\int \frac{2 x}{(x-1)^{2}(x+4)} d x=\frac{2}{25}\left[\frac{5}{1-x}+4 \ln (1-x)-4 \ln (x+4)\right]+c$.
2. Find the volumes of the solids generated by revolving the following functions around the x axis:
(a) $\frac{32 \pi}{5}$.
(b) $\frac{242 \pi}{5}$.
(c) $\frac{\pi}{2}$.
(d) $\frac{\pi}{4}\left(e^{4}-1\right)$.
(e) 2π.
3. Find the volumes of the solids generated by revolving the following functions around the y axis:
(a) $\frac{32 \pi}{3}$.
(b) $\frac{\pi^{2}}{4}$.
(c) $\frac{\pi}{2}$.
(d) $\frac{\pi}{4}\left(e^{4}-1\right)$.
4. The gradient function of a function $y(x)$ is given by $2 x$:
(a) $\frac{d y}{d x}=2 x$.
(b) $y=x^{2}+c$.
(c) $y=x^{2}+2$.
5. Consider the function $y=\sin x+x$:
(a) $\frac{d y}{d x}=\cos x+1$.
(b) $y=\sin x+x+c$.
6. You are given that $\frac{d x}{d t}=\frac{1}{2 \sqrt{t}}$ and $\frac{d y}{d t}=2 t$, for some parametric equations $x(t)$ and $y(t)$:
(a) $\frac{d y}{d x}=4 x^{3}$.
(b) $y=x^{4}+c$.
7. Solve the following differential equations:
(a) $y=2 x^{2}+c$.
(b) $y=\sin x+c$.
(c) $y=e^{x^{2}}+c$.
(d) $y=A e^{\frac{x^{3}}{3}}$.
(e) $y=A x e^{x}$.
8. Consider the ODE $\frac{d y}{d x}=-\frac{x}{y}$:
(a) $x^{2}+y^{2}=c$.
(b) $x^{2}+y^{2}=4$
(c) This is the equation of a circle centred at the origin of radius 2.
