


## C3 - Integration MEI, OCR, AQA, Edexcel

1. Calculate the following integrals. Remember to include a constant of integration where necessary:

| (a) $\int 2x  dx$ .         | [1] |
|-----------------------------|-----|
| (b) $\int \sin x  dx$ .     | [1] |
| (c) $\int \frac{1}{x} dx$ . | [1] |
| (d) $\int_0^2 1  dx$ .      | [1] |

2. Calculate the following integrals by using integration by substitution:

| (a) $\int x e^{x^2} dx.$        | [2] |
|---------------------------------|-----|
| (b) $\int x^2 \sin(x^3)  dx.$   | [2] |
| (c) $\int (x+1)e^{(x+1)^2} dx.$ | [3] |
| (d) $\int \tan x  dx$ .         | [3] |
| (e) $\int \sin x \cos x  dx$ .  | [3] |
| (f) $\int \frac{\ln x}{x} dx$ . | [3] |

3. Challange: Using the fact that  $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$ , evaluate the following integral:

$$\int_{-\infty}^{\infty} e^{(2-x)(2+x)} \, dx,$$

Hint: you do not need to evaluate the integral by substituation, by parts or any other means. A simple bit of algebraic manipulation will yield the answer.

[4]

- 4. Calculate the following integrals by using integration by parts:
  - (a)  $\int x \sin x \, dx$ . [3]
  - (b)  $\int x \cos x \, dx.$  [3] (c)  $\int x^2 \sin x \, dx.$  [3]
  - (d)  $\int \ln x \, dx.$  (*Hint:*  $\int \ln x \, dx = \int 1 \times \ln x \, dx.$ ) [3]
  - (e)  $\int x^3 \ln x \, dx$ .
- 5. Challange: By using the technique of integration by parts, evaluate the following integral:

$$I = \int \sin(2x) \sin(x) \, dx.$$

[3]

[5]

[3]

6. Consider the function  $y = x \sin x$  sketched below:

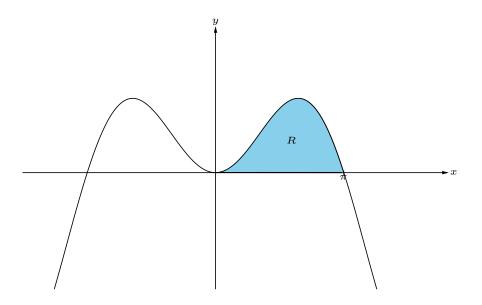



Figure 1: The graph of  $y = x \sin x$ .

(a) Calculate the area of the shaded region R.