AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C3 Integration (Answers)

Name:

Mathsmadeeasy.co.uk

Total Marks: /44

C3 - Integration (Answers) MEI, OCR, AQA, Edexcel

1. Calculate the following integrals. Remember to include a constant of integration where necessary:

(a)
$$x^2 + c$$
. [1]

(b)
$$-\cos x + c$$
. [1]

(c)
$$\ln x + c$$
. [1]

2. Calculate the following integrals by using integration by substitution:

(a)
$$\frac{e^{x^2}}{2} + c$$
. [2]

(b)
$$-\frac{1}{3}\cos(x^3) + c$$
. [2]

(c)
$$\frac{1}{2}e^{(x+1)^2} + c$$
. [3]

$$(d) - \ln(\cos x) + c. ag{3}$$

(e)
$$-\frac{1}{2}\cos^2 x + c$$
. [3]

(f)
$$\frac{\ln^2 x}{2} + c$$
. [3]

3. Challange: Using the fact that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$, evaluate the following integral:

$$\int_{-\infty}^{\infty} e^{(2-x)(2+x)} dx.$$

This question just requires some clever algebraic manipulation:

$$\int_{-\infty}^{\infty} e^{(2-x)(2+x)} dx = \int_{-\infty}^{\infty} e^{4-x^2} dx$$
$$= \int_{-\infty}^{\infty} e^4 e^{-x^2} dx$$
$$= e^4 \int_{-\infty}^{\infty} e^{-x^2} dx$$
$$= e^4 \sqrt{\pi}.$$

4. Calculate the following integrals by using integration by parts:

(a)
$$\sin x - x \cos x + c$$
. [3]

(b)
$$x \sin x + \cos x + c$$
. [3]

(c)
$$2x\sin x - (x^2 - 2)\cos x + c$$
. [3]

(d)
$$x \ln x - x + c$$
.

(e)
$$\frac{1}{16}x^4(4\ln x - 1) + c$$
. [3]

 $Turn\ over$

5. Challange: By using the technique of integration by parts, evaluate the following integral:

$$I = \int \sin(2x)\sin(x) \ dx.$$

This is a difficult question. We start by using integration by parts once using the following:

$$u = \sin(2x),$$
 $v' = \sin x,$
 $u' = 2\cos(2x),$ $v = -\cos x.$

This yields:

$$I = -\sin(2x)\cos x + 2\int\cos(2x)\cos x \,dx.$$

We now integrate by parts again to evaluate the integral on the right, this time using:

$$u = \cos(2x),$$
 $v' = \cos x,$
 $u' = -2\sin(2x),$ $v = \sin x.$

This yields

$$I = -\sin(2x)\cos x + 2\left[\sin x \cos(2x) + 2\int \sin(x)\sin x \, dx\right]$$

= $-\sin(2x)\cos x + 2\sin x \cos(2x) + 4\int \sin(2x)\sin x \, dx$
= $-\sin(2x)\cos x + 2\sin x \cos(2x) + 4I$

And so we have an equation to solve:

$$I = -\sin(2x)\cos x + 2\sin x\cos(2x) + 4I.$$

Rearranging to make I the subject we get:

$$I = \frac{1}{3} \left(\sin(2x) \cos x - 2 \sin x \cos(2x) \right).$$

Full marks should be awarded for the answer above. However, we can make some simplifications to the answer using trigonometric identities:

$$I = \frac{1}{3} (\sin(2x)\cos x - 2\sin x \cos(2x))$$

$$= \frac{1}{3} ([\sin(2x)\cos x - \sin x \cos(2x)] - \sin x \cos(2x))$$

$$= \frac{1}{3} (\sin x - \sin x \cos(2x))$$

$$= \frac{1}{3} \sin x (1 - \cos(2x))$$

$$= \frac{1}{3} \sin x (1 - (\cos^2 x - \sin^2 x))$$

$$= \frac{1}{3} \sin x (2\sin^2 x)$$

$$= \frac{2}{3} \sin^3 x.$$

[5]

6. Consider the function $y = x \sin x$ sketched below:

Figure 1: The graph of $y = x \sin x$.

(a) To calculate the area of the region R, we simply evaluate $\int_0^{\pi} x \sin x \, dx$. To do this we use integration by parts:

$$u = x,$$
 $v' = \sin x,$ $u' = 1,$ $v = -\cos x.$

Thus,

$$\int_0^{\pi} x \sin x \, dx = [-x \cos x]_0^{\pi} + \int_0^{\pi} \cos x \, dx$$
$$= \pi + [\sin x]_0^{\pi}$$
$$= \pi$$

And so the area of the region R is π !