AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C3 Functions (Answers)

Name:

M
 Mathsmadeeasy.co.uk

Total Marks: /61

C3 - Functions (Answers)
MEI, OCR, AQA, Edexcel

1. Consider the functions $f(x)=x+2$ and $g(x)=x^{2}$. Find the composite functions:
(a)

$$
\begin{aligned}
f g(x) & =f(g(x)) \\
& =f\left(x^{2}\right) \\
& =x^{2}+2
\end{aligned}
$$

(b)

$$
\begin{aligned}
g f(x) & =g(f(x)) \\
& =g(x+2) \\
& =(x+2)^{2} \\
& =x^{2}+4 x+4 .
\end{aligned}
$$

2. Consider the function $f(x)=2 x-1$:
(a) $f^{-1}(x)=\frac{1}{2}(x+1)$.
(b)

$$
\begin{aligned}
f^{-1} f(x) & =f^{-1}(f(x)) \\
& =f^{-1}(2 x-1) \\
& =\frac{1}{2}((2 x-1)+1) \\
& =x
\end{aligned}
$$

(c) Again, $f f^{-1}(x)=x$.
3. A function is invertible if and only if it is a bijection. In other words, the function must be one-to-one and onto.
4. A function $f(x)$ is said to be an odd function if $f(-x)=-f(x)$. Similarly, $f(x)$ is said to be an even function if $f(-x)=f(x)$:
(a) Let $f(x)$ and $g(x)$ be two odd functions. Denote $s(x)$ to be the function obtained by adding these two functions together. Thus,

$$
s(x)=f(x)+g(x)
$$

Now we just need to show that $s(x)$ is an odd function: we need to show that $s(-x)=-s(x)$. Let's compute $s(-x)$ then:

$$
\begin{aligned}
s(-x) & =f(-x)+g(-x) \\
& =-f(x)-g(x) \\
& =-(f(x)+g(x)) \\
& =-s(x)
\end{aligned}
$$

Hence this proves that the sum of two odd function is odd, as required.
(b) Let $f(x)$ and $g(x)$ be two odd functions. Let $p(x)$ be their product. Thus

$$
p(x)=f(x) g(x)
$$

Now let's compute $p(-x)$:

$$
\begin{aligned}
p(-x) & =f(-x) g(-x) \\
& =[-f(x)] \times[-g(x)] \\
& =f(x) g(x) \\
& =p(x)
\end{aligned}
$$

Thus, $p(-x)=p(x)$ so we know that $p(x)$ is an even function. Thus, the product of two odd functions gives an even function.
(c)

$$
\begin{aligned}
h(-x) & =f(-x) g(-x)+g(-x) \\
& =-f(x) g(x)-g(x) \\
& =-[f(x) g(x)+g(x)] \\
& =-h(x)
\end{aligned}
$$

Thus, $h(x)$ is an odd function!
(d) If $f(x)$ is an even function then its graph is symmetrical about the y axis.
(e) If $g(x)$ is an odd function then its graph is antisymmetrical about the y axis. In other words, the graph to the left-hand side of the y axis is a rotation by 180° of the graph on the right-hand side of the y axis.
5. Consider the function $f(x)=2 x+2$:
(a) $f^{-1}(x)=\frac{1}{2} x-1$.

Figure 1: The graphs of $f(x), f^{-1}(x)$ and $g(x)=x$ plotted on the same axes.
(b) The graph of $f^{-1}(x)$ is a reflection along the line $y=x$. (This gives us a very easy way to sketch inverse functions if we already have the graph of the function).
6. In order for a function to be invertible it needs to be one-to-one and onto. The function $y=\arcsin x$ (or $\left.y=\sin ^{-1} x\right)$ is the inverse of the sine function $y=\sin x$. The problem is that the sine function is not one-to-one. In order to find the inverse we must restrict the domain. This can be done by only taking x values in the range $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ as shown in the plot below:
(a)

Figure 2: The graphs of $y=x, y=\sin x$ and $y=\arcsin x$ plotted on the same axes.
(b) The domain is now $-1 \leq x \leq 1$ and the range is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
7. Sketch the following functions, clearly indicating any points of intersection with the axes and the location of any minimum/maximum points:
(a)

Figure 3: $y=|x|$.
(b)

Figure 4: $y=|x|+1$.
(c)

Figure 5: $y=|x+1|$.
(d)

Figure 6: $y=|2 x|+1$.
8. Solve the following equations:
(a) $x= \pm 1$.
(b) $x=-1$ and $x=4$.
9. Solve the following inequalities. Hint: you may find sketches to be helpful:
(a) $-3<x<3$.
(b) $-1<x<2$.
(c) $-2<x<2$.
(d) $-\frac{1}{3}<x<1$.
(e) $x<-1$ and $x>\frac{1}{2}$.

