

C3 - Exponentials and Natural Logarithms MEI, OCR, AQA, Edexcel

1. Sketch the following functions, clearly indicating and points of intersection with the axis:

(a) $y = e^x$.	[2]
(b) $y = 2e^{-x}$.	[2]
(c) $y = e^{2x}$.	[2]
(d) $y = \ln x + 1.$	[2]
(e) $y = \ln\left(\frac{1}{2}x\right)$.	[2]

2. Solve the following equations. Give your answers to two decimal places when necessary:

(a) $e^{2x} = 3$.	[2]
(b) $e^{\frac{1}{2}x} = 1.$	[2]

(c)
$$e^{x^2 - 1} + 2 = 3.$$
 [2]

(d)
$$e^{2x} - 5e^x + 6 = 0$$
 (Give you answer in exact form). [3]

[3]

(e)
$$xe^x = 3x$$
.

3. Imagine that you put £100 into a savings account that pays fixed $\beta\%$ interest annually. After t years the balance of the account B is given by:

$$B = 100e^{t \ln 1.02}$$

(a) Calculate the value of the account B immediately after the third year.	[2]
(b) How many years will it take for the balance of the account to reach £130?	[4]
(c) Using the laws of logarithms, write the formula for B in the form $B = ak^t$, for some constants a and k to be determined.	
(d) Using your answer to part c), what was the fixed annual interest rate $\beta\%$ of the account?	[1]