AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C3 Exponentials and Natural Logarithms (Answers)

Name:

M M E

 Mathsmadeeasy.co.uk

 Mathsmadeeasy.co.uk}

Total Marks: /29

C3 - Exponentials and Natural Logarithms (Answers)
MEI, OCR, AQA, Edexcel

1. Sketch the following functions, clearly indicating and points of intersection with the axis:
(a)

Figure 1: $y=e^{x}$.
(b)

Figure 2: $y=2 e^{-x}$.
(c)

Figure 3: $y=e^{2 x}$.
(d)

Figure 4: $y=\ln x+1$.
(e)

Figure 5: $y=\ln \left(\frac{1}{2} x\right)$.
2. Solve the following equations. Give your answers to two decimal places when necessary:
(a) $x=\frac{\ln 3}{2}=0.55 \quad$ (2 decimal places).
(b) $x=0$.
(c) $x= \pm 1$.
(d) $x=\ln 2$ and $x=\ln 3$.
(e) $x=0$ and $x=\ln 3=1.10 \quad$ (2 decimal places).
3. Imagine that you put $£ 100$ into a savings account that pays fixed $\beta \%$ interest annually. After t years the balance of the account B is given by:

$$
B=100 e^{t \ln 1.02}
$$

(a) Substituting $t=3$ into the formula we get $B=100 e^{3 \ln 1.02}=106.1208$ Thus the value after three years is $£ 106.12$.
(b) We need to solve the inequality $B \geq 130$:

$$
\begin{aligned}
B & \geq 130 \\
\Longrightarrow 100 e^{t \ln 1.02} & \geq 130 \\
\Longrightarrow e^{t \ln 1.02} & \geq 1.3 \\
\Longrightarrow e^{\ln (1.02)^{t}} & \geq 1.3 \\
\Longrightarrow(1.02)^{t} & \geq 1.3 \\
\Longrightarrow t \ln 1.02 & \geq \ln 1.3 \\
\Longrightarrow t & \geq \frac{\ln 1.3}{\ln 1.02}=13.24896 \cdots
\end{aligned}
$$

And so $t \geq 13.25$ years. Therefore the balance reaches $£ 130$ after roughly 13 years and 3 months.
(c)

$$
\begin{aligned}
B & =100 e^{t \ln 1.02} \\
& =100 e^{\ln (1.02)^{t}} \\
& =100(1.02)^{t} .
\end{aligned}
$$

And this is the form we require, with $a=100$ and $k=1.02$.
(d) The above formula is $B=100(1.02)^{t}$. This is just a compound interest formula to mark a deposit of 100 units and an interest rate of 2%. Thus, the answer is 2% interest.

