

C3 - Differentiation (Answers) MEI, OCR, AQA, Edexcel

1. Differentiate the following functions by using the product rule:

2.

3.

(a) $\frac{dy}{dx} = 2x.$	[1]
(b) $\frac{dy}{dx} = \sin x + x \cos x.$	[2]
(c) $\frac{dy}{dx} = 2x\cos x - x^2\sin x.$	[2]
(d) $\frac{dy}{dx} = \cos^2 x - \sin^2 x$ (= cos(2x)).	[2]
(e) $\frac{dy}{dx} = e^x [(x+1)\sin x + x\cos x].$	[3]
Differentiate the following functions by using the quotient rule:	
(a) $\frac{dy}{dx} = \frac{x(x-2)}{(x-1)^2}.$	[2]
(b) $\frac{dy}{dx} = \frac{e^x}{x^2}(x-1).$	[2]
(c) $\frac{dy}{dx} = \sec^2 x.$	[3]
Differentiate the following functions by using the chain rule:	
(a) $\frac{dy}{dx} = 2\cos(2x).$	[2]
(b) $\frac{dy}{dx} = 2(x+1).$	[2]

(c) $\frac{dy}{dx} = 4xe^{x^2}$. [2] (d) $\frac{dy}{dx} = 2xe^{x^2}\cos(e^{x^2})$ [2]

(d)
$$\frac{dy}{dx} = 2xe^{x^2}\cos(e^{x^2}).$$
 [2]
(e) $\frac{dy}{dx} = 2e^{\sin(2x)}\cos(2x).$ [2]

- 4. Differentiate the following functions:
 - (a) $\frac{dy}{dx} = \frac{1}{x}.$ [1]

(b)
$$\frac{dy}{dx} = \frac{2}{x}$$
. [2]

(c)
$$\frac{dy}{dx} = x^2 e^{2x} (2x+3).$$
 [3]

5. Differentiate the following functions implicitly:

(a)	$\frac{dy}{dx} = \frac{3x^2}{2}.$	[2]
(b)	$\frac{dy}{dx} = \frac{x}{y}.$	[2]
(c)	$\frac{dy}{dx} = \frac{1}{2y} \left(\sin(2x) + 2x \cos(2x) \right).$	[3]

(d)
$$\frac{dy}{dx} = -\frac{x}{2y}.$$
 [2]

6. Challange: This is a tricky question. We start with $y = \arcsin x$. We apply the sine function to both sides to get:

$$x = \sin y. \tag{1}$$

We now differentiate with respect to y:

$$\frac{dx}{dy} = \cos y.$$

And so we have that:

$$\frac{dy}{dx} = \frac{1}{\cos y}$$

But this isn't the answer as the right hand side contains a y. We need to rewrite $\cos y$ in terms of x. In order to do this we use the well-known trig identity:

$$\sin^2 y + \cos^2 y = 1.$$

We rearrange this identity to get:

$$\cos y = \pm \sqrt{1 - \sin^2 y}.$$

But from equation (1) we know that $x = \sin y$. Thus, using the above we write:

$$\cos y = \pm \sqrt{1 - x^2}.$$

And so we can write

$$\frac{dy}{dx} = \frac{1}{\pm\sqrt{1-x^2}}.$$

But which square root do we take? In order to make this decision we need to consider the range of $y = \arcsin x$. We know that the range of $y = \arcsin x$ is [-1, 1]. This means that y ranges between -1 and 1. But for y values in the interval [-1, 1], we know that $\cos y$ is positive. Thus we must take the positive square root. Hence our final answer is:

$$\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}.$$

ſ	6	1
		ы.