AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics
 C3 Differentiation (Answers)

Name:

M

```
C3 - Differentiation (Answers)
MEI, OCR, AQA, Edexcel
```

1. Differentiate the following functions by using the product rule:
(a) $\frac{d y}{d x}=2 x$.
(b) $\frac{d y}{d x}=\sin x+x \cos x$.
(c) $\frac{d y}{d x}=2 x \cos x-x^{2} \sin x$.
(d) $\frac{d y}{d x}=\cos ^{2} x-\sin ^{2} x \quad(=\cos (2 x))$.
(e) $\frac{d y}{d x}=e^{x}[(x+1) \sin x+x \cos x]$.
2. Differentiate the following functions by using the quotient rule:
(a) $\frac{d y}{d x}=\frac{x(x-2)}{(x-1)^{2}}$.
(b) $\frac{d y}{d x}=\frac{e^{x}}{x^{2}}(x-1)$.
(c) $\frac{d y}{d x}=\sec ^{2} x$.
3. Differentiate the following functions by using the chain rule:
(a) $\frac{d y}{d x}=2 \cos (2 x)$.
(b) $\frac{d y}{d x}=2(x+1)$.
(c) $\frac{d y}{d x}=4 x e^{x^{2}}$.
(d) $\frac{d y}{d x}=2 x e^{x^{2}} \cos \left(e^{x^{2}}\right)$.
(e) $\frac{d y}{d x}=2 e^{\sin (2 x)} \cos (2 x)$.
4. Differentiate the following functions:
(a) $\frac{d y}{d x}=\frac{1}{x}$.
(b) $\frac{d y}{d x}=\frac{2}{x}$.
(c) $\frac{d y}{d x}=x^{2} e^{2 x}(2 x+3)$.
5. Differentiate the following functions implicitly:
(a) $\frac{d y}{d x}=\frac{3 x^{2}}{2}$.
(b) $\frac{d y}{d x}=\frac{x}{y}$.
(c) $\frac{d y}{d x}=\frac{1}{2 y}(\sin (2 x)+2 x \cos (2 x))$.
(d) $\frac{d y}{d x}=-\frac{x}{2 y}$.
6. Challange: This is a tricky question. We start with $y=\arcsin x$. We apply the sine function to both sides to get:

$$
\begin{equation*}
x=\sin y \tag{1}
\end{equation*}
$$

We now differentiate with respsect to y :

$$
\frac{d x}{d y}=\cos y
$$

And so we have that:

$$
\frac{d y}{d x}=\frac{1}{\cos y}
$$

But this isn't the answer as the right hand side contains a y. We need to rewrite $\cos y$ in terms of x. In order to do this we use the well-known trig identity:

$$
\sin ^{2} y+\cos ^{2} y=1
$$

We rearrange this identity to get:

$$
\cos y= \pm \sqrt{1-\sin ^{2} y}
$$

But from equation (1) we know that $x=\sin y$. Thus, using the above we write:

$$
\cos y= \pm \sqrt{1-x^{2}}
$$

And so we can write

$$
\frac{d y}{d x}=\frac{1}{ \pm \sqrt{1-x^{2}}}
$$

But which square root do we take? In order to make this decision we need to consider the range of $y=\arcsin x$. We know that the range of $y=\arcsin x$ is $[-1,1]$. This means that y ranges between -1 and 1. But for y values in the interval $[-1,1]$, we know that $\cos y$ is positive. Thus we must take the positive square root. Hence our final answer is:

$$
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}} .
$$

