## AQA, Edexcel, OCR

## A Level

## A Level Mathematics

Newton-Raphson method and other recurrence relations (Answers)

Name:

# M 

## Total Marks:

1) Write the first four terms of the recurrence relationship defined as

$$
U_{n+1}=3 U_{n}+1
$$

where $\boldsymbol{U}_{0}=3$
[1 mark for correct initialisation]

$$
\begin{gathered}
U_{1}=3(3)+1=10 \\
U_{2}=3(10)+1=91 \\
U_{3}=3(91)+1=274
\end{gathered}
$$

[1 mark for correct answer]

$$
U_{4}=3(274)+1=823
$$

2) A relationship is given as

$$
R_{n+1}=\left(A R_{n}+B\right)
$$

we know that
$R_{0}=4, R_{1}=6, R_{2}=8, R_{3}=10$
Determine a general solution and the value for $\boldsymbol{R}_{4}$.
[1 mark]
Substituting the known values of $R_{n}$ gives the statements

$$
\begin{gather*}
6=A(4)+B  \tag{2}\\
8=A(6)+B  \tag{3}\\
10=A(8)+B
\end{gather*}
$$

Subtracting (1) from (2) gives

$$
\begin{gather*}
2=2 A  \tag{4}\\
\Rightarrow A=1
\end{gather*}
$$

Substituting (4) into (3) gives

$$
\begin{gather*}
10=8+B  \tag{5}\\
\Rightarrow B=2
\end{gather*}
$$

[1 mark for correct answer]
Equations (4) and (5) allow us to create a general solution of

$$
\begin{gathered}
R_{n+1}=R_{n}+2 \\
\Rightarrow R_{4}=10+2 \\
R_{4}=12
\end{gathered}
$$

3) i) Use the Newton-Raphson method to find the first four terms of the following:

$$
x^{3}+3 x^{2}-8 x+0.8=0
$$

## You may use

$$
x_{0}=0
$$

Newton-Raphson method is defined as

$$
x_{n+1}=x_{n}-\frac{f(x)}{f^{\prime}(x)}
$$

[1 mark]
Here,

$$
\begin{gathered}
f(x)=x^{3}+3 x^{2}-8 x+0.8 \\
f^{\prime}(x)=3 x^{2}+6 x-8
\end{gathered}
$$

[1 mark]
Initialise the iteration process with $x_{0}=0$

$$
\begin{gathered}
x_{1}=0-\frac{0^{3}+3(0)^{2}-8(0)+0.8}{0+0-8}=\frac{0.8}{-8}=-0.1 \\
x_{2}=-0.1-\frac{-0.1^{3}+3(-0.1)^{2}-8(-0.1)+0.8}{3(-0.1)^{2}+6(-0.1)-8}=0.104206
\end{gathered}
$$

[1 mark]
The solution continued using a spreadsheet

| $\mathbf{n}$ | $\mathbf{x}(\mathrm{n})$ | $\mathbf{f}(\mathrm{x})$ | $\mathbf{f}^{\prime}(\mathrm{x})$ | $\mathbf{x}(\mathrm{n}+1)$ |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 0.104206242 | $5.84596 \mathrm{E}-05$ | -7.342185729 | 0.104214204 |
| 3 | 0.104214204 | $2.10007 \mathrm{E}-10$ | -7.342132977 | 0.104214204 |
| 4 | 0.104214204 | 0 | -7.342132977 | $\mathbf{0 . 1 0 4 2 1 4 2 0 4}$ |

ii) Explain why $x_{0}=\sqrt{\frac{11}{3}}-1$ is not a viable option.
[1 mark]
Substituting this value in gives

$$
x_{1}=\sqrt{\frac{11}{3}}-1-\frac{\left(\sqrt{\frac{11}{3}}-1\right)^{3}+3\left(\sqrt{\frac{11}{3}}-1\right)^{2}-8\left(\sqrt{\frac{11}{3}}-1\right)+0.8}{3\left(\sqrt{\frac{11}{3}}-1\right)^{2}+6\left(\sqrt{\frac{11}{3}}-1\right)-8}
$$

[1 mark]
If we concentrate on the expanding the denominator only, we get

$$
3\left(\frac{11}{3}-2 \sqrt{\frac{11}{3}}+1\right)+6 \sqrt{\frac{11}{3}}-6-8
$$

$$
\begin{gathered}
=11-6 \sqrt{\frac{11}{3}}+3+6 \sqrt{\frac{11}{3}}-14 \\
=14-14=0
\end{gathered}
$$

And we cannot have a 0 denominator. Therefore, it will not work.

## 4) What is the value of the term $\boldsymbol{U}_{56}$ for the relationship

$$
\boldsymbol{U}_{\boldsymbol{n}+\mathbf{1}}=-\boldsymbol{U} \boldsymbol{n}^{\boldsymbol{n}}
$$

where $U_{0}=1$
The first four terms are as allows
[1 mark]

$$
\begin{gathered}
U_{1}=-1^{0}=-1 \\
U_{2}=-(-1)^{1}=1 \\
U_{3}=-1^{2}=-1 \\
U_{4}=-(-1)^{3}=1
\end{gathered}
$$

[1 mark]
The pattern is for $U_{2 n}=1$ and $U_{2 n+1}=-1$. Therefore,

$$
U_{56}=1
$$

5) i) Draw a flow chart showing how to estimate a solution to $x^{2}+3 x-6=0$ using a recurrence process.
[1 mark for correct differential step]
[1 mark for estimating a solution graphically or other]
[1 mark for correct initialisation of Newton-Raphson or other]
[1 mark for continuous loop until answer stops changing]
Some form of the following graph including the steps of initialisation and recurrence until a desired level of decimal points in an answer are obtained.


## ii) Calculate one of the roots to 2 dp .

[1 mark]
Use the quadratic formula and $a=1, b=3$ and $c=-6$

$$
\begin{gathered}
x=\frac{-3 \pm \sqrt{3^{2}-4(1)(-6)}}{2(1)} \\
=\frac{-3 \pm \sqrt{33}}{2} \\
x=\frac{-3+\sqrt{33}}{2} \approx 1.37(\text { to } 2 d p)
\end{gathered}
$$

[1 mark]
We only need one of the solutions, however, an alternative could be

$$
x=\frac{-3-\sqrt{33}}{2} \approx-4.37(\text { to } 2 d p)
$$

6) i) Using an iterative process find one of the non-integer roots of

$$
\begin{equation*}
2 x^{3}+2 x^{2}-10 x=4 \tag{1}
\end{equation*}
$$

[1 mark]
Using the Newton-Raphson method, we need to obtain an initial guess for $x_{n}$. Sketching the graph gives us


Attempting $x_{n}=-0.4$, seems sensible.
[1 mark]
The function (1) can be written as

$$
\begin{gathered}
f(x)=2 x^{3}+2 x^{2}-10 x-4 \\
\therefore f^{\prime}(x)=6 x^{2}+4 x-10
\end{gathered}
$$

[1 mark]
Using Newton-Raphson gives

$$
\begin{gathered}
x_{n+1}=x_{n}-\frac{2 x^{3}+2 x^{2}-10 x-4}{6 x^{2}+4 x-10} \\
x_{1}=-0.4-\frac{2(-0.4)^{3}+2(-0.4)^{2}-10(-0.4)-4}{6(-0.4)^{2}+4(-0.4)-10}=-0.3819
\end{gathered}
$$

[1 mark]
The next few iterations show that a solution is found readily

| $\mathbf{n}$ | $\mathbf{x}(\mathbf{n})$ | $\mathbf{f}(\mathbf{x})$ | $\mathbf{f}^{\prime}(\mathbf{x})$ | $\mathbf{x}(\mathbf{n + 1})$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | -0.4 | 0.192 | -10.64 | -0.381954887 |
| 1 | -0.381954887 | -0.000118499 | -10.65248233 | -0.381966011 |
| 2 | -0.381966011 | $-3.61027 \mathrm{E}-11$ | -10.65247584 | -0.381966011 |
| 3 | -0.381966011 | 0 | -10.65247584 | -0.381966011 |
| 4 | -0.381966011 | 0 | -10.65247584 | -0.381966011 |

ii) Show that one of the roots is 2 .

$$
2 x^{3}+2 x^{2}-10 x=4
$$

[1 mark]
Substitute in $x=2$ into (1)

$$
\begin{gathered}
2(2)^{3}+2(2)^{2}-10(2)=4 \\
16+8-20=4 \\
24-20=4
\end{gathered}
$$

7) Use the Newton-Raphson method to find one of the solutions to

$$
x^{2}+5 x-11=0
$$

You may use

$$
x_{0}=1.6
$$

[1 mark]

$$
X_{1}=1.6-\frac{(1.6)^{2}+5(1.6)-11}{2(1.6)+5}=1.653
$$

[1 mark]

| $\mathbf{n}$ | $\mathbf{x}(\mathrm{n})$ | $\mathbf{f}(\mathrm{x})$ | $\mathbf{f}^{\prime}(\mathrm{x})$ | $\mathbf{x}(\mathrm{n}+1)$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1.6 | -0.44 | 8.2 | 1.653658537 |
| 1 | 1.653658537 | 0.002879239 | 8.307317073 | 1.653311946 |
| 2 | 1.653311946 | $1.20125 \mathrm{E}-07$ | 8.306623892 | 1.653311931 |
| 3 | 1.653311931 | 0 | 8.306623863 | 1.653311931 |
| 4 | 1.653311931 | 0 | 8.306623863 | 1.653311931 |

8) Estimate $\sqrt{2}$ using the Newton Raphson method.
[1 mark]
To estimate this, we need to define a function to which $\sqrt{2}$ is a solution. This function is:

$$
x^{2}-2=0
$$

[1 mark]
Continuing with Newton-Raphson as normal

$$
\begin{gathered}
f(x)=x^{2}-2 \\
f^{\prime}(x)=2 x
\end{gathered}
$$

[1 mark]
Estimating the initial value (by sketch or recalling it)

$$
\begin{gathered}
x_{0}=1.4 \\
x_{1}=1.4-\frac{(1.4)^{2}-2}{2(1.4)}=1.14128
\end{gathered}
$$

[1 mark]
Looking at the full table of iterations we see that a more precise and consistent value is found after only 3 iterations.

| $\mathbf{n}$ | $\mathbf{x}(\mathrm{n})$ | $\mathbf{f}(\mathbf{x})$ | $\mathbf{f}^{\prime}(\mathrm{x})$ | $\mathbf{x}(\mathrm{n}+1)$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1.4 | -0.04 | 2.8 | 1.414285714 |
| 1 | 1.414285714 | 0.000204082 | 2.828571429 | 1.414213564 |
| 2 | 1.414213564 | $5.20563 \mathrm{E}-09$ | 2.828427128 | 1.414213562 |
| 3 | 1.414213562 | 0 | 2.828427125 | 1.414213562 |
| 4 | 1.414213562 | 0 | 2.828427125 | 1.414213562 |
| 5 | 1.414213562 | 0 | 2.828427125 | 1.414213562 |

