

C2 - Trigonometry MEI, OCR, AQA, Edexcel

1. Consider the equilateral triangle below:

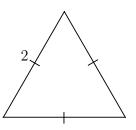


Figure 1: An equilateral triangle of side length 2.

(a) By splitting the triangle into two congruent right angled triangles show that $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$. [3]

[3]

[3]

[2]

- (b) By drawing an independent right angled triangle, show that $\cos 45^\circ = \sin 45^\circ = \frac{1}{\sqrt{2}}$.
- (c) Without using a calculator, what are the values of $\cos(-45^\circ)$ and $\sin(-45)^\circ$? You may wish to either consider what quadrant of the unit circle -45° lies in or to sketch out the graphs of $y = \sin x$ and $y = \cos x$.
- (d) What is 45° in radians? [2]
- (e) Hence, or otherwise evaluate $\sin \frac{3\pi}{4}$ and $\cos \frac{3\pi}{4}$.
- 2. Simplify the following expressions:

(a) $\sin^2 \theta + \cos^2 \theta$.	[1]
(b) $\sin^2(2\theta) + \sin^2(\theta) + \cos^2(2\theta) + 1.$	[2]
(c) $\tan\theta\cos\theta$.	[2]
(d) $\frac{\sin^2\theta}{1-\cos^2\theta}$.	[2]
(e) $\frac{\sin^3\theta}{\cos\theta-\cos^3\theta}$.	[3]
(f) $\frac{\tan^2\theta}{(1-\cos\theta)(1+\cos\theta)}$.	[3]

3.	Solve the equation $\sin(2x) = 1$ for $0^{\circ} < x < 360^{\circ}$. Give your answer in exact form.	[3]
4.	Solve the equation $\sin^2(2x) = 1$ for $0^\circ < x < 360^\circ$. Give your answer in exact form.	[3]
5.	Solve the equation $2\cos(3x) = \sqrt{3}$ for $0 < x < 2\pi$. Give your answer in exact form.	[4]
6.	Solve the equation $\tan^2 x - 2 \tan x + 1 = 0$ for $0 < x < 2\pi$. Give your answer in exact form.	[4]

- 7. Solve the equation $2\cos^2 x = 3 3\sin x$ for $0 < x < \pi$ by writing the equation as a quadratic in $\sin x$. Give your answer in exact form. [4]
- 8. Consider the triangle below:

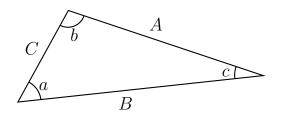


Figure 2: A triangle with side lengths A, B, C and angles a, b, c.

(a) State the general formula for the <i>area</i> of the triangle.	[1]
(b) State the sine rule.	[2]
(c) State the cosine rule.	[2]
(d) Calculate the area of the triangle when $A = 5, B = 6$ and $c = \frac{\pi}{3}$.	[2]
(e) Calculate the length C using the values in part (d).	[3]

9. Consider the sector of a circle below:

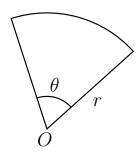


Figure 3: A circle sector of radius r and angle θ .

(a) State the formula for the <i>arc length</i> of the sector.	[1]
(b) State the formula for the <i>area</i> of the sector.	[2]
(c) Calculate the area of the segment when $r = 5$ and $\theta = \frac{\pi}{3}$.	[2]
(d) Calculate the arc length of the segment when $r = 4$ and $\theta = 40^{\circ}$.	[2]

10. Consider the sector of a circle below. The shaded region ${\cal R}$ is a segment bounded by a chord on the circle.

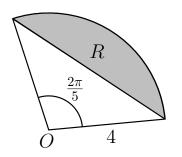


Figure 4: A circle sector of radius 4 and angle $\frac{2\pi}{5}$.

(a) Calculate the area of the sector.	[2]

[5]

(b) Calculate the area of the shaded segment R.