AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C2 Trigonometry

Name:

M E
 Mathsmadeeasy.co.uk

Total Marks: /68

```
C2 - Trigonometry
MEI, OCR, AQA, Edexcel
```

1. Consider the equilateral triangle below:

Figure 1: An equilateral triangle of side length 2.
(a) By splitting the triangle into two congruent right angled triangles show that $\sin 30^{\circ}=\frac{1}{2}$ and $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$.
(b) By drawing an independent right angled triangle, show that $\cos 45^{\circ}=\sin 45^{\circ}=\frac{1}{\sqrt{2}}$.
(c) Without using a calculator, what are the values of $\cos \left(-45^{\circ}\right)$ and $\sin (-45)^{\circ}$? You may wish to either consider what quadrant of the unit circle -45° lies in or to sketch out the graphs of $y=\sin x$ and $y=\cos x$.
(d) What is 45° in radians?
(e) Hence, or otherwise evaluate $\sin \frac{3 \pi}{4}$ and $\cos \frac{3 \pi}{4}$.
2. Simplify the following expresions:
(a) $\sin ^{2} \theta+\cos ^{2} \theta$.
(b) $\sin ^{2}(2 \theta)+\sin ^{2}(\theta)+\cos ^{2}(2 \theta)+1$.
(c) $\tan \theta \cos \theta$.
(d) $\frac{\sin ^{2} \theta}{1-\cos ^{2} \theta}$.
(e) $\frac{\sin ^{3} \theta}{\cos \theta-\cos ^{3} \theta}$.
(f) $\frac{\tan ^{2} \theta}{(1-\cos \theta)(1+\cos \theta)}$.
3. Solve the equation $\sin (2 x)=1$ for $0^{\circ}<x<360^{\circ}$. Give your answer in exact form.
4. Solve the equation $\sin ^{2}(2 x)=1$ for $0^{\circ}<x<360^{\circ}$. Give your answer in exact form.
5. Solve the equation $2 \cos (3 x)=\sqrt{3}$ for $0<x<2 \pi$. Give your answer in exact form.
6. Solve the equation $\tan ^{2} x-2 \tan x+1=0$ for $0<x<2 \pi$. Give your answer in exact form.
7. Solve the equation $2 \cos ^{2} x=3-3 \sin x$ for $0<x<\pi$ by writing the equation as a quadratic in $\sin x$. Give your answer in exact form.
8. Consider the triangle below:

Figure 2: A triangle with side lengths A, B, C and angles a, b, c.
(a) State the general formula for the area of the triangle.
(b) State the sine rule.
(c) State the cosine rule.
(d) Calculate the area of the triangle when $A=5, B=6$ and $c=\frac{\pi}{3}$.
(e) Calculate the length C using the values in part (d).
9. Consider the sector of a circle below:

Figure 3: A circle sector of radius r and angle θ.
(a) State the formula for the arc length of the sector.
(b) State the formula for the area of the sector.
(c) Calculate the area of the segment when $r=5$ and $\theta=\frac{\pi}{3}$.
(d) Calculate the arc length of the segment when $r=4$ and $\theta=40^{\circ}$.
10. Consider the sector of a circle below. The shaded region R is a segment bounded by a chord on the circle.

Figure 4: A circle sector of radius 4 and angle $\frac{2 \pi}{5}$.
(a) Calculate the area of the sector.
(b) Calculate the area of the shaded segment R.

