

C2 - Trigonometry (Answers) MEI, OCR, AQA, Edexcel

1. Consider the equilateral triangle below:

Figure 1: An equilateral triangle of side length 2.

(a) We simply split the triangle into two equal pieces as suggested and after a bit of pythagoras obtain:

From here, simple trigonometry yields $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$ as required.

(b) For example, we construct the triangle:

From here, simple trigonometry yields $\cos 45^\circ = \sin 45^\circ = \frac{1}{\sqrt{2}}$ as required.

(c)
$$\cos(-45^\circ) = \frac{1}{\sqrt{2}}$$
 and $\sin(-45)^\circ = -\frac{1}{\sqrt{2}}$. [3]

(d) $\frac{\pi}{4}$. [2]

(e)
$$\sin \frac{3\pi}{4} = \frac{1}{\sqrt{2}}$$
 and $\cos \frac{3\pi}{4} = -\frac{1}{\sqrt{2}}$. [2]

[3]

[3]

2. Simplify the following expressions:

(a) 1		[1]
(b) 2	$2 + \sin^2(2\theta).$	[2]
(c) s	$\operatorname{in} heta.$	[2]
(d) 1		[2]
(e) t	$\operatorname{an} \theta.$	[3]
(f) \overline{c}	$\frac{1}{\cos^2\theta}$ (or $\sec^2\theta$).	[3]
3. $x = 4$	$5^{\circ}, 225^{\circ}.$	[3]
4. $x = 4$	$5^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}.$	[3]
5. $x = \frac{\pi}{18}$	$\frac{1}{8}, \frac{11\pi}{18}, \frac{13\pi}{18}, \frac{23\pi}{18}, \frac{25\pi}{18}, \frac{35\pi}{18}.$	[4]
6. $x = \frac{\pi}{4}$	$\frac{5\pi}{4}$.	[4]
7. $x = \frac{\pi}{2}$	$\frac{\pi}{6}, \frac{5\pi}{6}.$	[4]

8. Consider the triangle below:

Figure 2: A triangle with side lengths A, B, C and angles a, b, c.

(a) area = $\frac{1}{2}AB\sin c$.	[1]
(b) $\frac{\sin a}{A} = \frac{\sin b}{B} = \frac{\sin c}{C}$.	[2]
(c) $A^2 = B^2 + C^2 - 2BC \cos a$.	[2]
(d) Area = $\frac{15\sqrt{3}}{2}$.	[2]
(e) $C = \sqrt{31}$.	[3]

9. Consider the sector of a circle below:

Figure 3: A circle sector of radius r and angle θ .

- (a) $S = r\theta$. [1]
- (b) $A = \frac{1}{2}r^2\theta.$ [2]
 - (c) $A = \frac{25\pi}{6}$. [2]
 - (d) Be Careful! We are given an angle in *degrees*. We must convert this to radians first. The answer is

S

$$=rac{8\pi}{9}.$$

10. Consider the sector of a circle below. The shaded segment R is bounded by a chord on the circle.

Figure 4: A circle sector of radius 4 and angle $\frac{2\pi}{5}$.

(a)
$$A = \frac{16\pi}{5}$$
.

(b) We first calculate the area of the triangle to be $\frac{1}{2} \times 4 \times 4 \times \sin \frac{2\pi}{5} = 7.60845 \cdots$. Thus, the area of R is $\frac{16\pi}{5} - 7.60845 \cdots = 2.4446 \cdots$. Hence the area of the shaded region R is 2.44 (to two decimal places).

[2]

[5]

[2]