AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics
 C2 Trigonometry (Answers)

Name:

M

$$
\begin{aligned}
& \text { C2 - Trigonometry (Answers) } \\
& \text { MEI, OCR, AQA, Edexcel }
\end{aligned}
$$

1. Consider the equilateral triangle below:

Figure 1: An equilateral triangle of side length 2.
(a) We simply split the triangle into two equal pieces as suggested and after a bit of pythagoras obtain:

From here, simple trigonometry yields $\sin 30^{\circ}=\frac{1}{2}$ and $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$ as required.
(b) For example, we construct the triangle:

From here, simple trigonometry yields $\cos 45^{\circ}=\sin 45^{\circ}=\frac{1}{\sqrt{2}}$ as required.
(c) $\cos \left(-45^{\circ}\right)=\frac{1}{\sqrt{2}}$ and $\sin (-45)^{\circ}=-\frac{1}{\sqrt{2}}$.
(d) $\frac{\pi}{4}$.
(e) $\sin \frac{3 \pi}{4}=\frac{1}{\sqrt{2}}$ and $\cos \frac{3 \pi}{4}=-\frac{1}{\sqrt{2}}$.
2. Simplify the following expresions:
(a) 1 .
(b) $2+\sin ^{2}(2 \theta)$.
(c) $\sin \theta$.
(d) 1 .
(e) $\tan \theta$.
(f) $\frac{1}{\cos ^{2} \theta} \quad\left(\right.$ or $\left.\sec ^{2} \theta\right)$.
3. $x=45^{\circ}, 225^{\circ}$.
4. $x=45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$.
5. $x=\frac{\pi}{18}, \frac{11 \pi}{18}, \frac{13 \pi}{18}, \frac{23 \pi}{18}, \frac{25 \pi}{18}, \frac{35 \pi}{18}$.
6. $x=\frac{\pi}{4}, \frac{5 \pi}{4}$.
7. $x=\frac{\pi}{2}, \frac{\pi}{6}, \frac{5 \pi}{6}$.
8. Consider the triangle below:

Figure 2: A triangle with side lengths A, B, C and angles a, b, c.
(a) area $=\frac{1}{2} A B \sin c$.
(b) $\frac{\sin a}{A}=\frac{\sin b}{B}=\frac{\sin c}{C}$.
(c) $A^{2}=B^{2}+C^{2}-2 B C \cos a$.
(d) Area $=\frac{15 \sqrt{3}}{2}$.
(e) $C=\sqrt{31}$.
9. Consider the sector of a circle below:

Figure 3: A circle sector of radius r and angle θ.
(a) $S=r \theta$.
(b) $A=\frac{1}{2} r^{2} \theta$.
(c) $A=\frac{25 \pi}{6}$.
(d) Be Careful! We are given an angle in degrees. We must convert this to radians first. The answer is

$$
S=\frac{8 \pi}{9}
$$

10. Consider the sector of a circle below. The shaded segment R is bounded by a chord on the circle.

Figure 4: A circle sector of radius 4 and angle $\frac{2 \pi}{5}$.
(a) $A=\frac{16 \pi}{5}$.
(b) We first calculate the area of the triangle to be $\frac{1}{2} \times 4 \times 4 \times \sin \frac{2 \pi}{5}=7.60845 \cdots$. Thus, the area of R is $\frac{16 \pi}{5}-7.60845 \cdots=2.4446 \cdots$. Hence the area of the shaded region R is 2.44 (to two decimal places).

