AQA, Edexcel, OCR

A Level

A Level Mathematics

C2 Sequences and Series

Name:

M M E Mathsmadeeasy.co.uk

Total Marks: /116

1. Consider an arithmetic sequence with $k^{t h}$ term given by $a_{k}=a+(k-1) d$. Prove that

$$
S=\sum_{k=1}^{n} a_{k}=\frac{1}{2} n(2 a+(n-1) d)
$$

Hint: this is a proof that you may have seen in class. To begin, write out the sum term by term:

$$
S=a+(a+d)+(a+2 d)+(a+3 d)+\cdots+(a+(n-2) d+(a+(n-1) d) .
$$

Now compute $S+S$ using the above by adding the first term to the last term, the second term to the second-to-last term, the third term to the third-to-last term and so on. One the left hand side you have $2 s$, but what do you have on the right hand side? Can you make any simplifications by collecting like terms and rearranging?
2. Consider the sequence defined recursively by:

$$
u_{n+2}=4 u_{n+1}-u_{n}, \quad n \geq 1
$$

where,

$$
u_{1}=1, \quad u_{2}=2
$$

(a) Calculate u_{3} and u_{4}.
(b) Calculate $\sum_{n=1}^{5} u_{n}$.
3. Consider the sequence defined recursively by:

$$
u_{n+2}=2 u_{n+1}-u_{n}, \quad n \geq 1
$$

where,

$$
u_{1}=5, \quad u_{2}=7
$$

(a) Calculate u_{3}, u_{4} and u_{5}.
(b) Calculate $\sum_{n=1}^{5} u_{n}$.
(c) Write u_{n} in the form $u_{n}=a+b n$ for some coeficients a, b to be determined.
(d) Calculate $\sum_{n=1}^{100} u_{n}$.
4. The $k^{t h}$ term of an arithmetic sequence is given by $a_{k}=2+4(k-1)$.
(a) Write down the value of the first term a_{1}.
(b) Calculate the value of the second term a_{2}.
(c) What is the common difference d in this arithmetic sequence?
(d) Calculate the value of $\sum_{k=1}^{2} a_{k}$.
(e) Evaluate $\sum_{k=1}^{50} a_{k}$.
5. An arithmetic sequence has fifth term $a_{5}=17$ and eigth term $a_{8}=26$.
(a) Find the common difference d and the first term a.
(b) Evaluate $\sum_{k=1}^{30} a_{k}$.
6. Consider the sequence with $n^{t h}$ term given by $u_{n}=2 n+1$.
(a) Calculate the first four terms u_{1}, u_{2}, u_{3} and u_{4}.
(b) What type of sequence is this?
(c) Evaluate $\sum_{n=1}^{20} u_{n}$.
7. Which of the following series are convergent? Which are divergent? You are not required to evaluate the convergent series.
(a) $\sum_{n=0}^{\infty} 1$.
(b) $\sum_{n=0}^{\infty} 2 n$.
(c) $\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}$.
(d) $\sum_{n=0}^{\infty} 20\left(\frac{1}{2}\right)^{n}$.
(e) $\sum_{n=0}^{\infty} 2^{n}$.
(f) $\sum_{n=0}^{\infty} r^{n}$, What condition do we need to impose for it to be convergent?
(g) $\sum_{n=0}^{\infty}(2 r)^{n}$, What condition do we need to impose for it to be convergent?
8. Consider the geometric sequence with general term given by $a_{k}=\left(\frac{1}{2}\right)^{k}$:
(a) Calculate the value of a_{3}.
(b) Calculate the value of $\sum_{k=0}^{20} a_{k}$.
(c) Evaluate $\sum_{k=0}^{\infty} a_{k}$.
9. Evaluate $\sum_{k=1}^{\infty} 4\left(\frac{1}{6}\right)^{k}$.
10. Consider a geometric sequence with $k^{t h}$ term $a_{k}=a r^{k}$ such that:

$$
\begin{aligned}
a_{1} & =1, \\
\sum_{k=0}^{\infty} a r^{k} & =\frac{9}{2} .
\end{aligned}
$$

(a) Find the two sets of possible values for a and r.
(Hint: form two equations in a and r using the information given in the question)
11. Expand the following expressions. Hint: use Pascal's triangle and binomial expansion:
(a) $(x+1)^{4}$.
(b) $(x+2)^{3}$.
(c) $(2 x+3)^{4}$.
(d) $(2 x+1)^{3}(x+2)$.
12. Evaluate the following binomial coefficients:
(a) $\binom{1}{0}$.
(b) $\binom{5}{1}$.
(c) $\binom{3}{2}$.
(d) $\binom{4}{3}$.
(e) ${ }^{5} C_{3}$.
(f) ${ }^{1} C_{0}$.
(g) ${ }^{3} C_{2}$.
(h) ${ }^{4} C_{3}$.
(i) ${ }^{5} C_{5}$.
13. Find the coefficient of x^{3} in the expansion of $(2 x+3)^{3}$.
14. Find the coefficient of x^{5} in the expansion of $(3 x-1)^{7}$.
15. Find the coefficient of x^{4} in the expansion of $(3 x-5)^{6}$.
16. Find the coefficient of x^{3} in the expansion of $(2-x)^{6}(x-3)$.

