

1. Consider an arithmetic sequence with k^{th} term given by $a_k = a + (k-1)d$. Prove that

$$S = \sum_{k=1}^{n} a_k = \frac{1}{2}n(2a + (n-1)d).$$

To begin, write out the sum term by term:

$$S = a + (a + d) + (a + 2d) + (a + 3d) + \dots + (a + (n - 2)d + (a + (n - 1)d)).$$

Now compute S + S using the above by adding the first term to the last term, the second term to the second-to-last term, the third term to the third-to-last term and so on. To make this easier to visualise we may write:

$$S = a + (a+d) + \dots + (a+(n-2)d + (a+(n-1)d).$$
(1)

$$S = (a + (n-1)d) + (a + (n-2)d) + \dots + (a+d) + a.$$
⁽²⁾

We now add both lines together to obtain:

$$2S = (2a + (n-1)d) + (2a + (n-1)d) + \dots + (2a + (n-1)d) + (2a + (n-1)d),$$

Where we note that we simply have n lots of (2a + (n-1)d) on the right. And so we write:

$$2S = n(2a + (n-1)d),$$

which when rearranged yields:

$$S = \frac{1}{2}n(2a + (n-1)d),$$

as required.

2. Consider the sequence defined recursively by:

$$u_{n+2} = 4u_{n+1} - u_n, \qquad n \ge 1,$$

where,

$$u_1 = 1, \quad u_2 = 2.$$

(a) $u_3 = 7$ and $u_4 = 26$.

[8]

[3]

(b)
$$\sum_{n=1}^{5} u_n = 1 + 2 + 7 + 26 + 97 = 133$$

3. Consider the sequence defined recursively by:

$$u_{n+2} = 2u_{n+1} - u_n, \qquad n \ge 1$$

where,

$$u_1 = 5, \quad u_2 = 7.$$

- (a) $u_3 = 9, u_4 = 11$ and $u_5 = 13$.
- (b) $\sum_{n=1}^{5} u_n = 5 + 7 + 9 + 11 + 13 = 45.$
- (c) We find the n^{th} term of the sequence to be $u_n = 2n + 3$.
- (d) This is a hard question. To calculate this sum we adopt the method used in question 1). Let $S = \sum_{n=1}^{100} u_n$. We write this out term by term as:

$$S = 5 + 7 + 9 + 11 + \dots + 201 + 203.$$
(3)

Now we rewrite S again but this time order the terms from largest to smallest rather than smallest to largest:

$$S = 203 + 201 + 199 + 197 + \dots + 7 + 5.$$
(4)

We now add these two lines together term by term (in other words we do (3)+(4)) to get:

$$2S = 208 + 208 + 208 + 208 + \dots + 208 + 208.$$

Now there are 100 terms on the right hand side and so we have:

$$2S = 100 \times 208,$$

which we rearrange to get:

$$S = 50 \times 208 = 10400.$$

Therefore we get the answer:

$$S = \sum_{n=1}^{100} u_n = 10400.$$

[5]

[3]

[2]

[4]

- 4. The k^{th} term of an arithmetic sequence is given by $a_k = 2 + 4(k-1)$.
 - (a) $a_1 = 2.$ [1]
 - (b) $a_2 = 6.$ [2]
 - (c) d = 4. [1]
 - (d) $\sum_{k=1}^{2} a_k = a_1 + a_2 = 2 + 6 = 8.$ [1]
 - (e) $\sum_{k=1}^{50} a_k = 5000$ (Use the arithmetic series formula given in Q1 with n = 50, a = 2 and d = 4) [3]
- 5. An arithmetic sequence has fifth term $a_5 = 17$ and eight term $a_8 = 26$.
 - (a) d = 3 and a = 5. [2]

(b)
$$\sum_{k=1}^{30} a_k = 1455.$$
 [3]

6. Consider the sequence with n^{th} term given by $u_n = 2n + 1$.

(a)
$$u_1 = 3, u_2 = 5, u_3 = 7$$
 and $u_4 = 9$. [2]

(b) This is an arithmetic sequence with common difference d = 2 and first term a = 3. [2]

(c)
$$\sum_{n=1}^{20} u_n = 440.$$
 [3]

7. Which of the following series are convergent? Which are divergent? You are not required to evaluate the convergent series.

(a) $\sum_{n=0}^{\infty} 1$ is divergent. We are adding the number 1 to itself an infinite number of times.	[1]
(b) $\sum_{n=0}^{\infty} 2n$ is divergent. The numbers are getting bigger and bigger each time and we are adding an infinite number of them.	[1]
(c) $\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$ is convergent. This is a geometric series with $r = \frac{1}{2}$. Since $\left \frac{1}{2}\right < 1$, it converges.	[1]
(d) $\sum_{n=0}^{\infty} 20 \left(\frac{1}{2}\right)^n$ is convergent. This is just a scalar multiple of the series above.	[1]
(e) $\sum_{n=0}^{\infty} 2^n$ is divergent. This is a geometric series with $r = 2$. Since $ 2 > 1$, it diverges.	[1]
(f) $\sum_{n=0}^{\infty} r^n$ is a geometric series. It converges if $ r < 1$.	[2]
(g) $\sum_{n=0}^{\infty} (2r)^n$ is a geometric series. It converges if $ 2r < 1$. I.e. when $ r < \frac{1}{2}$.	[2]

8. Consider the geometric sequence with general term given by $a_k = \left(\frac{1}{2}\right)^k$:

(a)
$$a_3 = \frac{1}{8}$$
. [1]

(b)
$$\sum_{k=0}^{20} a_k = \frac{1 - \left(\frac{1}{2}\right)^{20}}{1 - \frac{1}{2}} = \frac{2097151}{1048576} = 1.999 \cdots$$
 [3]

(c)
$$\sum_{k=0}^{\infty} a_k = 2.$$
 [3]

9. Be careful! This is a sum from 1 to ∞ not 0 to ∞ . To begin, we evaluate $\sum_{k=0}^{\infty} 4\left(\frac{1}{6}\right)^k = \frac{24}{5}$ as normal. But we need to spot that we have added one term too many. We need to discount the zero term. The zero term is $4 \times \left(\frac{1}{6}\right)^0 = 4$. And so we get the answer:

$$\sum_{k=1}^{\infty} 4\left(\frac{1}{6}\right)^k = \frac{24}{5} - 4 = \frac{4}{5}$$
[4]

10. Consider a geometric sequence with k^{th} term $a_k = ar^k$ such that:

$$a_1 = 1,$$
$$\sum_{k=0}^{\infty} ar^k = \frac{9}{2}.$$

(a) Either a = 3 and $r = \frac{1}{3}$, or $a = \frac{3}{2}$ and $r = \frac{2}{3}$.

(b) $x^3 + 6x^2 + 12x + 8$.

- 11. Expand the following expressions. Hint: use Pascal's triangle and binomial expansion:
 - (a) $x^4 + 4x^3 + 6x^2 + 4x + 1.$ [2]
 - (c) $16x^4 + 96x^3 + 216x^2 + 216x + 81.$ [2]

(d)
$$8x^4 + 28x^3 + 30x^2 + 13x + 2.$$
 [3]

[5]

[2]

12. Evaluate the following binomial coefficients:

(a) 1.	[2]
(b) 5.	[2]
(c) 3.	[2]
(d) 4.	[2]
(e) 10	. [2]
(f) 1.	[2]
(g) 3.	[2]
(h) 4.	[2]
(i) 1.	[2]
13. 8.	[3]

14.5103.

16. To find the coefficient of x^3 in the expansion of $(2-x)^6(x-3)$ we first must think about how we could get x^3 terms in the final expansion. Cearly, we need to find the x^2 and x^3 terms in the expansion of $(2-x)^6$. The reason for this is that if we expanded $(2-x)^6$ then the only way we can generate x^3 terms when we multiply by (x-3) is by an x^2 term multiplied by the x or an x^3 term multiplied by the -3 term. Since we are doing an expansion to the power 6, we need the 6^{th} row of Pascal's triangle:

 $1 \quad 6 \quad 15 \quad 20 \quad 15 \quad 6 \quad 1 \\$

The x^2 term in this expansion is:	$15 \times (2)^4 \times (-x)^2 = 240x^2.$
And the x^3 term is:	$20 \times (2)^3 \times (-x)^3 = -160x^3.$
In the final multiplication we x^3 term	ns by: $240x^2 \times x = 240x^3$,
and:	$-160x^3 \times (-3) = 480x^3,$

And so the coefficient of the x^3 term is: 240 + 480 = 720.

Page 6

[5]

[4]

[4]

^{15. 30375.}