AQA, Edexcel, OCR

A Level

A Level Mathematics

C2 Sequences and Series
(Answers)

Name:

M

C2 - Sequences and Series (Answers) OCR, AQA, Edexcel

1. Consider an arithmetic sequence with $k^{\text {th }}$ term given by $a_{k}=a+(k-1) d$. Prove that

$$
S=\sum_{k=1}^{n} a_{k}=\frac{1}{2} n(2 a+(n-1) d) .
$$

To begin, write out the sum term by term:

$$
S=a+(a+d)+(a+2 d)+(a+3 d)+\cdots+(a+(n-2) d+(a+(n-1) d) .
$$

Now compute $S+S$ using the above by adding the first term to the last term, the second term to the second-to-last term, the third term to the third-to-last term and so on. To make this easier to visualise we may write:

$$
\begin{array}{lll}
S=a & +(a+d) & +\cdots+(a+(n-2) d+(a+(n-1) d) . \\
S=(a+(n-1) d)+(a+(n-2) d)+\cdots+(a+d) & +a . \tag{2}
\end{array}
$$

We now add both lines together to obtain:

$$
2 S=(2 a+(n-1) d)+(2 a+(n-1) d)+\cdots+(2 a+(n-1) d)+(2 a+(n-1) d),
$$

Where we note that we simply have n lots of $(2 a+(n-1) d)$ on the right. And so we write:

$$
2 S=n(2 a+(n-1) d),
$$

which when rearranged yields:

$$
S=\frac{1}{2} n(2 a+(n-1) d)
$$

as required.
2. Consider the sequence defined recursively by:

$$
u_{n+2}=4 u_{n+1}-u_{n}, \quad n \geq 1
$$

where,

$$
u_{1}=1, \quad u_{2}=2
$$

(a) $u_{3}=7$ and $u_{4}=26$.
(b) $\sum_{n=1}^{5} u_{n}=1+2+7+26+97=133$.
3. Consider the sequence defined recursively by:

$$
u_{n+2}=2 u_{n+1}-u_{n}, \quad n \geq 1
$$

where,

$$
u_{1}=5, \quad u_{2}=7
$$

(a) $u_{3}=9, u_{4}=11$ and $u_{5}=13$.
(b) $\sum_{n=1}^{5} u_{n}=5+7+9+11+13=45$.
(c) We find the $n^{\text {th }}$ term of the sequence to be $u_{n}=2 n+3$.
(d) This is a hard question. To calculate this sum we adopt the method used in question 1).

Let $S=\sum_{n=1}^{100} u_{n}$. We write this out term by term as:

$$
\begin{equation*}
S=5+7+9+11+\cdots+201+203 \tag{3}
\end{equation*}
$$

Now we rewrite S again but this time order the terms from largest to smallest rather than smallest to largest:

$$
\begin{equation*}
S=203+201+199+197+\cdots+7+5 \tag{4}
\end{equation*}
$$

We now add these two lines together term by term (in other words we do (3)+(4)) to get:

$$
2 S=208+208+208+208+\cdots+208+208
$$

Now there are 100 terms on the right hand side and so we have:

$$
2 S=100 \times 208
$$

which we rearrange to get:

$$
S=50 \times 208=10400
$$

Therefore we get the answer:

$$
S=\sum_{n=1}^{100} u_{n}=10400
$$

4. The $k^{t h}$ term of an arithmetic sequence is given by $a_{k}=2+4(k-1)$.
(a) $a_{1}=2$.
(b) $a_{2}=6$.
(c) $d=4$.
(d) $\sum_{k=1}^{2} a_{k}=a_{1}+a_{2}=2+6=8$.
(e) $\sum_{k=1}^{50} a_{k}=5000$ (Use the arithmetic series formula given in Q1 with $n=50, a=2$ and $d=4$)
5. An arithmetic sequence has fifth term $a_{5}=17$ and eigth term $a_{8}=26$.
(a) $d=3$ and $a=5$.
(b) $\sum_{k=1}^{30} a_{k}=1455$.
6. Consider the sequence with $n^{t h}$ term given by $u_{n}=2 n+1$.
(a) $u_{1}=3, u_{2}=5, u_{3}=7$ and $u_{4}=9$.
(b) This is an arithmetic sequence with common difference $d=2$ and first term $a=3$.
(c) $\sum_{n=1}^{20} u_{n}=440$.
7. Which of the following series are convergent? Which are divergent? You are not required to evaluate the convergent series.
(a) $\sum_{n=0}^{\infty} 1$ is divergent. We are adding the number 1 to itself an infinite number of times.
(b) $\sum_{n=0}^{\infty} 2 n$ is divergent. The numbers are getting bigger and bigger each time and we are adding an infinite number of them.
(c) $\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}$ is convergent. This is a geometric series with $r=\frac{1}{2}$. Since $\left|\frac{1}{2}\right|<1$, it converges.
(d) $\sum_{n=0}^{\infty} 20\left(\frac{1}{2}\right)^{n}$ is convergent. This is just a scalar multiple of the series above.
(e) $\sum_{n=0}^{\infty} 2^{n}$ is divergent. This is a geometric series with $r=2$. Since $|2|>1$, it diverges.
(f) $\sum_{n=0}^{\infty} r^{n}$ is a geometric series. It converges if $|r|<1$.
(g) $\sum_{n=0}^{\infty}(2 r)^{n}$ is a geometric series. It converges if $|2 r|<1$. I.e. when $|r|<\frac{1}{2}$.

-

8. Consider the geometric sequence with general term given by $a_{k}=\left(\frac{1}{2}\right)^{k}$:
(a) $a_{3}=\frac{1}{8}$.
(b) $\sum_{k=0}^{20} a_{k}=\frac{1-\left(\frac{1}{2}\right)^{20}}{1-\frac{1}{2}}=\frac{2097151}{1048576}=1.999 \cdots$.
(c) $\sum_{k=0}^{\infty} a_{k}=2$.
9. Be careful! This is a sum from 1 to ∞ not 0 to ∞. To begin, we evaluate $\sum_{k=0}^{\infty} 4\left(\frac{1}{6}\right)^{k}=\frac{24}{5}$ as normal. But we need to spot that we have added one term too many. We need to discount the zero term. The zero term is $4 \times\left(\frac{1}{6}\right)^{0}=4$. And so we get the answer:

$$
\sum_{k=1}^{\infty} 4\left(\frac{1}{6}\right)^{k}=\frac{24}{5}-4=\frac{4}{5}
$$

10. Consider a geometric sequence with $k^{t h}$ term $a_{k}=a r^{k}$ such that:

$$
\begin{align*}
a_{1} & =1 \\
\sum_{k=0}^{\infty} a r^{k} & =\frac{9}{2} \tag{5}
\end{align*}
$$

(a) Either $a=3$ and $r=\frac{1}{3}$, or $a=\frac{3}{2}$ and $r=\frac{2}{3}$.
11. Expand the following expressions. Hint: use Pascal's triangle and binomial expansion:
(a) $x^{4}+4 x^{3}+6 x^{2}+4 x+1$.
(b) $x^{3}+6 x^{2}+12 x+8$.
(c) $16 x^{4}+96 x^{3}+216 x^{2}+216 x+81$.
(d) $8 x^{4}+28 x^{3}+30 x^{2}+13 x+2$.
12. Evaluate the following binomial coefficients:
(a) 1 .
(b) 5 .
(c) 3 .
(d) 4 .
(e) 10 .
(f) 1 .
(g) 3 .
(h) 4 .
(i) 1 .
13. 8.
14. 5103.
15. 30375.
16. To find the coefficient of x^{3} in the expansion of $(2-x)^{6}(x-3)$ we first must think about how we could get x^{3} terms in the final expansion. Cearly, we need to find the x^{2} and x^{3} terms in the expansion of $(2-x)^{6}$. The reason for this is that if we expanded $(2-x)^{6}$ then the only way we can generate x^{3} terms when we multiply by $(x-3)$ is by an x^{2} term multiplied by the x or an x^{3} term multiplied by the -3 term. Since we are doing an expansion to the power 6 , we need the $6^{\text {th }}$ row of Pascal's triangle:

$$
\begin{array}{lllllll}
1 & 6 & 15 & 20 & 15 & 6 & 1
\end{array}
$$

The x^{2} term in this expansion is: $\quad 15 \times(2)^{4} \times(-x)^{2}=240 x^{2}$.
And the x^{3} term is:

$$
20 \times(2)^{3} \times(-x)^{3}=-160 x^{3}
$$

In the final multiplication we x^{3} terms by: $240 x^{2} \times x=240 x^{3}$, and:

$$
-160 x^{3} \times(-3)=480 x^{3}
$$

And so the coefficient of the x^{3} term is: $\quad 240+480=720$.

