AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C2 Logarithms

Name:

Mathsmadeeasy.co.uk

Total Marks: /57

C2 - Logarithms MEI, OCR, AQA, Edexcel

1. Simplify the following expressions: (a) $\log_{10} a + \log_{10} a$. [1] (b) $\log_{10} a + \log_{10} b$. [1] (c) $\log_{10} 1 + \log_{10} 10$. [2] (d) $\log_{10} a^3 + 7 \log_{10} a$. [2] (e) $\log_{10} \frac{x^3}{y} - 3\log_{10} x$. [2] (f) $\log_{10}(x^2 - 5x + 6) - \log_{10}(x - 3)$. [2]2. Evaluate the following expressions: (a) $\log_2 8$. [1] (b) $\log_6 6$. [1] (c) $\log_{100} 1$. [1] (d) $\log_{10} 1000$. [1] 3. Solve the following equations. Give your answer to two decimal places where necessary: (a) $2^x = 4$. [1] (b) $3^x = 30$. [3] (c) $2^x = 0.2$. [3] (d) $2^{x+3} = 5^{3x}$. [4](e) $4^{x-1} = 7^{2x}$. [4](f) $a^{2x-1} = b^{3x}$,

[4]

Give your answer in terms of a and b.

- 4. Sketch the following functions, clearly indicating the points of any intersections with the axes:
 - (a) $y = 2^x$. [2]
 - (b) $y = 3^x + 1$
 - (c) $y = 3^{-x} + 2$.
 - (d) $y = -3^x$.

[4]

[4]

- 5. The equation $\log_{10} y = 2\log_{10} x + \log_{10} 20$ gives the equation of a straight line with gradient 2 and intercept $\log_{10} 20$ when $\log_{10} y$ and $\log_{10} x$ are used for the axes variables. Find the equation relating x and y.
- 6. Suppose that you invest £100 into a bond that pays 2% interest each year. That is, at the end of each year the value of the bond increases by 2% of its total value at that point in time. Let the value of the bond at the end of year n be B_n , where n is an integer. At the end of year one the bond is worth $100 \times 1.02 = £102$. Its value at the end of year two is $102 \times 1.02 = £104.04$. Hence $B_1 = 102$ and $B_2 = 104.04$.
 - (a) Calculate B_3 , the value of the bond at time 3. [2]
 - (b) Write down an expression for the value of the bond B_n at the end of year n. [2]
 - (c) At what integer value of n will the bond be worth more than £150? Hint: solve $B_n > 150$ using your expression found in part b).
 - (d) The value of the bond may also be expressed as $B_n = 100 \times 10^{kn}$ for some undetermined constant k. Find the value of k. [4]