AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C2 Logarithms (Answers)

Name:

Mathsmadeeasy.co.uk

Total Marks: /57

C2 - Logarithms (Answers) MEI, OCR, AQA, Edexcel

(a) 21cm a	11
(a) $2\log_{10} a$.	1]
(b) $\log_{10} ab$.	1]
(c) 1.	2]
(d) $10 \log_{10} a$.	2]
(e) $-\log_{10} y$.	2]
(f) $\log_{10}(x-2)$.	2]
2. Evaluate the following expressions:	
(a) 3.	1]
(b) 1.	1]
(c) 0.	1]
(d) 3.	1]
3. Solve the following equations. Give your answer to two decimal places where necessary:	
(a) $x = 2$.	1]
(b) $x = 3.10$.	3]
(c) $x = -2.32$.	3]
(d) $x = 0.5$.	4]
(e) $x = -0.55$.	4]
(f) $x = \frac{\log_{10} a}{2\log_{10} a - 3\log_{10} b}$	4]

4. Sketch the following functions, clearly indicating the points of any intersections with the axes:

[2]

Figure 1: $y = 2^x$.

(b) [2]

Figure 2: $y = 3^x + 1$.

Figure 3: $y = 3^{-x} + 2$.

[2]

Figure 4: $y = -3^x$.

5. $y = 20x^2$ [4]

6. Suppose that you invest £100 into a bond that pays 2% interest each year. That is, at the end of each year the value of the bond increases by 2% of its total value at that point in time. Let the value of the bond at the end of year n be B_n , where n is an integer. At the end of year one the bond is worth $100 \times 1.02 = £102$. Its value at the end of year two is $102 \times 1.02 = £104.04$. Hence $B_1 = 102$ and $B_2 = 104.04$.

(a)
$$B_3 = 106.12$$
.

(b)
$$B_n = 100 \times (1.02)^n$$

(c) We solve $100 \times (1.02)^n > 150$. This reduces to:

$$(1.02)^n > \frac{3}{2}$$

We take logs on both sides:

$$n\log_{10} 1.02 > \log_{10} \frac{3}{2},$$

and rearrange to get:

$$n > \frac{\log_{10} \frac{3}{2}}{\log_{10} 1.02} = 20.4753 \cdots.$$

Hence, the bond will be worth more than £150 at the end of the 21^{st} year.

(d) We solve $100 \times 10^{kn} = 100 \times (1.02)^n$. This reduces to:

$$10^{kn} = (1.02)^n$$
.

We again take logs on both sides to obtain:

$$kn \log_{10} 10 = n \log_{10} 1.02.$$

Rearranging yields:

$$k = \log_{10} 1.02$$

[4]

[4]