AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics
 C2 Calculus

Name:

M E
 Mathsmadeeasy.co.uk

Total Marks: /138

```
                        C2 - Calculus
MEI, OCR, AQA, Edexcel
```

1. For each of the following functions calculate $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$:
(a) $y=x$.
(b) $y=x^{\frac{1}{3}}$.
(c) $y=\frac{4}{3} x^{3}$.
(d) $y=5 x^{4}+3 x+20$.
(e) $y=x(x-1)$.
(f) $3 x^{2}+2 y=108$.
(g) $y=2 x(x-3)(x-5)$.
(h) $y=\frac{x^{2}+3 x+2}{x}$.
(i) $y=\frac{3 x^{3}+6 \sqrt{x}+3}{3 x^{\frac{1}{4}}}$.
(j) $x y-2 y-2 x^{3}+4 x^{2}=0 \quad($ for $x \neq 2)$.
2. Find the gradients of the following functions at the speficied points:
(a) $y=2 x^{2}$ at $x=3$.
(b) $y=3 x^{2}-\frac{2}{3} x+1$ at $x=0$.
(c) $x y-y-2 x^{2}+2 x=0$ at $x=2$.
3. Consider the function $f(x)=x^{2}-2 x+4$:
(a) By finding $f^{\prime}(x)$ show that $f(x)$ has a stationary point at $(1,3)$.
(b) Determine the nature of the stationary point.
(c) By writing $f(x)$ in the form $f(x)=(x+a)^{2}+b$, verify that $f(x)$ has a stationary point at $(1,3)$.
(d) Calculate the gradient of $f(x)$ at $x=4$.
(e) Hence, or otherwise show that the equation of the tangent line to $f(x)$ at $x=4$ is $g(x)=6(x-2)$, where $g(x)$ denotes the function of the tangent line.
4. Consider the function $f(x)=\frac{2}{3} x^{3}+b x^{2}+2 x+3$, where b is some undetermined coefficient:
(a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) You are given that $f(x)$ has a stationary point at $x=2$. Use this information to find b.
(c) Find the coordinates of the other stationary point.
(d) Determine the nature of both stationary points.
5. Integrate the following functions. Remember to include a constant of integration:
(a) $\frac{d y}{d x}=1$.
(b) $\frac{d y}{d x}=2 x^{\frac{1}{3}}$.
(c) $\frac{d y}{d x}=\frac{3}{4} x^{3}$.
(d) $\frac{d y}{d x}=x^{4}+3 x+8$.
(e) $\frac{d y}{d x}=x(x-1)$.
(f) $5 x^{2}+2 \frac{d y}{d x}=10$.
(g) $\frac{d y}{d x}=2 x(x-3)(x-5)$.
6. Consider the derivative $f^{\prime}(x)=x+3$. Find $f(x)$ using the fact that the point $(0,1)$ lies on the curve.
7. Consider the function $f^{\prime}(x)=16 x^{3}+9 x^{2}+\frac{1}{2}$. You are given that $f(1)=-\frac{5}{2}$. Find $f(x)$.
8. Consider the second derivative $f^{\prime \prime}(x)=6 x+4$ of some cubic function $f(x)$.
(a) Find $f^{\prime}(x)$.
(b) You are given that $f(0)=10$ and $f(1)=13$, find $f(x)$.
(c) Find all the stationay points of $f(x)$ and determine their nature.
9. Consider the quadratic function $f(x)=3 x^{2}+2 x+4$.
(a) Calculate $\int_{-1}^{2} f(x) d x$.
(b) What does the quantity found in part (a) represent?
10. The gradient function of a curve is $\frac{d y}{d x}=4 x-\frac{1}{x^{2}}$. Find the equation of the curve using the fact that the curve passes through the point $(1,4)$.
11. Consider the functions $f(x)=-x^{3}+2 x^{2}+3 x$ and $g(x)=-x^{3}+3 x^{2}-x+3$ sketched below.

(a) Find $f^{\prime}(x)$ and hence show that $f(x)$ has turning points at when $x=\frac{2}{3} \pm \frac{\sqrt{13}}{3}$.
(b) Find the points where $f(x)$ and $g(x)$ intersect.
(c) Evaluate $\int_{1}^{3}-x^{3}+2 x^{2}+3 x d x$.
(d) Calculate the area under $g(x)$ between $x=1$ and $x=3$.
(e) Using your answers to parts b) and c), calculate the area of the shaded region R.
12. Consider the function $f(x)=2 x+1$. By differentiating from first principles show that $f^{\prime}(x)=2$.

Hint: Calculate the following limit:

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

13. Consider the curve plotted below.

(a) Use the trapezium rule with three stips to estimate the area of the region bounded by the curve and the axes.
