## AQA, Edexcel, OCR, MEI

## A Level

## A Level Mathematics <br> C2 Calculus (Answers)

Name:

# M 

```
    C2 - Calculus (Answers)
MEI, OCR, AQA, Edexcel
```

1. For each of the following functions calculate $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ :
(a) $\frac{d y}{d x}=1, \quad \frac{d^{2} y}{d x^{2}}=0$.
(b) $\frac{d y}{d x}=3 x^{-\frac{2}{3}}, \quad \frac{d^{2} y}{d x^{2}}=-\frac{2}{9} x^{-\frac{5}{3}}$.
(c) $\frac{d y}{d x}=4 x^{2}, \quad \frac{d^{2} y}{d x^{2}}=8 x$.
(d) $\frac{d y}{d x}=20 x^{3}+3, \quad \frac{d^{2} y}{d x^{2}}=60 x^{2}$.
(e) $\frac{d y}{d x}=2 x-1, \quad \frac{d^{2} y}{d x^{2}}=2$.
(f) $\frac{d y}{d x}=-3 x, \quad \frac{d^{2} y}{d x^{2}}=-3$.
(g) $\frac{d y}{d x}=6 x^{2}-32 x+30, \quad \frac{d^{2} y}{d x^{2}}=12 x-32$.
(h) $\frac{d y}{d x}=1-\frac{2}{x^{2}}, \quad \frac{d^{2} y}{d x^{2}}=\frac{4}{x^{3}}$.
(i) $\frac{d y}{d x}=\frac{1}{4}\left(11 x^{\frac{7}{4}}+2 x^{-\frac{3}{4}}-x^{-\frac{5}{4}}\right), \quad \frac{d^{2} y}{d x^{2}}=\frac{1}{16}\left(77 x^{\frac{3}{4}}-6 x^{-\frac{7}{4}}+5 x^{-\frac{9}{4}}\right)$.
(j) $\frac{d y}{d x}=4 x, \quad \frac{d^{2} y}{d x^{2}}=4$.
2. Find the gradients of the following functions at the speficied points:
(a) 12 .
(b) $-\frac{2}{3}$.
(c) 2 .
3. Consider the function $f(x)=x^{2}-2 x+4$ :
(a) First we verify that the point $(1,3)$ lies on the curve which indeed it does. Nwo $f^{\prime}(x)=2 x-2$ and $f^{\prime}(1)=0$ and so $(1,3)$ is a stationary point.
(b) $f^{\prime \prime}(x)=2>0$ therefore the stationary point is a minimum.
(c) Completing the square yields $f(x)=(x-1)^{2}+3$ and so $(1,3)$ is the minimum point of the quadratic; it is a stationary point.
(d) $f^{\prime}(4)=6$ therefore the gradient is 6 .
(e) When $x=4, f(4)=12$, so the point $(4,12)$ lies on the curve. Now we use coordinate geometry on the point $(4,12)$ using a gradient of 6 to obtain the tangent line $g(x)=6(x-2)$ as required.
4. Consider the function $f(x)=\frac{2}{3} x^{3}+b x^{2}+2 x+3$, where $b$ is some undetermined coefficient:
(a) $f^{\prime}(x)=2 x^{2}+2 b x+2$ and $f^{\prime \prime}(x)=4 x+2 b$.
(b) $f(x)$ has a stationary point at $x=2$ therefore we know that $f^{\prime}(2)=0$, where $f^{\prime}(2)=0=10+4 b$. Rearranging gives $b=-\frac{5}{2}$.
(c) We need to solve $f^{\prime}(x)=0$. Thus we need to solve the quadratic $2 x^{2}-5 x+2=0$. The solutions are $x=2$ and $x=\frac{1}{2}$. And so the other stationary point has coordinates $\left(\frac{1}{2}, \frac{83}{24}\right)$.
(d) $f^{\prime \prime}(2)=3>0$ and $f^{\prime \prime}\left(\frac{1}{2}\right)=-3<0$, therefore the point at $x=2$ is a minimum and the point at $x=\frac{1}{2}$ is a maximum point.
5. Integrate the following functions. Remember to include a constant of integration:
(a) $y=x+c$.
(b) $y=\frac{3}{2} x^{\frac{4}{3}}+c$.
(c) $y=\frac{3}{16} x^{4}+x$.
(d) $y=\frac{1}{5} x^{5}+\frac{3}{2} x^{2}+8 x+c$.
(e) $y=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+c$.
(f) $y=-\frac{5}{6} x^{3}+5 x+c$.
(g) $y=\frac{1}{2} x^{4}-\frac{16}{3} x^{3}+15 x^{2}+c$.
6. $f(x)=\frac{1}{2} x^{2}+3 x+1$.
7. $f(x)=4 x^{4}+3 x^{3}+\frac{1}{2} x-10$.
8. Consider the second derivative $f^{\prime \prime}(x)=6 x+4$ of some cubic function $f(x)$.
(a) $f^{\prime}(x)=3 x^{2}+4 x+c$.
(b) $f(x)=x^{3}+2 x^{2}+10$.
(c) We solve $f^{\prime}(x)=0=3 x^{2}+4 x$. The solutions to the quadratic are $x=0$ and $x=-\frac{4}{3}$. The point $(0,10)$ is a minimum and the point $\left(-\frac{4}{3}, \frac{302}{27}\right)$ is a maximum.
9. Consider the quadratic function $f(x)=3 x^{2}+2 x+4$.
(a) $\int_{-1}^{2} f(x) d x=24$.
(b) The area under the curve $f(x)$ between $x=-1$ and $x=2$.
10. $y=2 x^{2}+\frac{1}{x}+1$.
11. Consider the functions $f(x)=-x^{3}+2 x^{2}+3 x$ and $g(x)=-x^{3}+3 x^{2}-x+3$ sketched below.

(a) $f^{\prime}(x)=-3 x^{2}+4 x+3$. We solve the quadratic equation $f^{\prime}(x)=0$ to obtain the solutions $x=\frac{2}{3} \pm \frac{\sqrt{13}}{3}$ as required.
(b) $(1,4)$ and $(3,0)$.
(c) $\frac{28}{3}$.
(d) $\int_{1}^{3} g(x) d x=8$.
(e) Area $=\frac{28}{3}-8=\frac{4}{3}$.
12. Consider the function $f(x)=x^{2}+1$. By differentiating from first principles show that $f^{\prime}(x)=2$.

Hint: Calculate the following limit:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{2(x+h)+1-(2 x+1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x+2 h+1-2 x-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h} \\
& =\lim _{h \rightarrow 0} 2=2,
\end{aligned}
$$

as required.
13. Consider the curve plotted below.

(a) A simple application of the trapezium rule formula: $\int_{a}^{b} y d x \approx \frac{1}{2} h\left(\left(y_{o}+y_{n}\right)+2\left(y_{1}+y_{2}+\cdots+y_{n-1}\right)\right)$, where $h=\frac{b-a}{n}$.

Here $y_{0}=0, y_{1}=4, y_{2}=6$ and $y_{3}=0$.
Substituting these values into the formula yields Area= 10.

