

1. Consider the linear function f(x) plotted below.

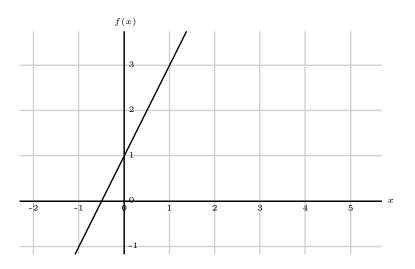


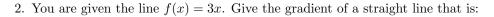
Figure 1: A plot of a linear function f(x).

(a)
$$y = 2x + 1$$
.

[2]

[2]

[2]



(a) 3. [1] (b) $-\frac{1}{3}$. [1]

3. Calculate the distance between the following points:

(a) 2.	[2]
(b) $\sqrt{10}$.	[2]

- (c) $\sqrt{53}$.
- 4. Calculate the midpoint between the following points:

(a) (0,2).	[2]
(b) $(3, \frac{5}{2})$.	[2]

(c) $(5 + \frac{\pi}{2}, 0)$.

5. Sketch the following lines on separate axes, clearly indicating any intersections with the axes:

[2]

[2]

(a) -1 -5 -4 -3 -2 1 2 3 5 6 Figure 2: y = 3x + 5(b) . 4 +2 10 -4 -2 2 8 +-4

Figure 3: $y = \frac{1}{2}x - 2$

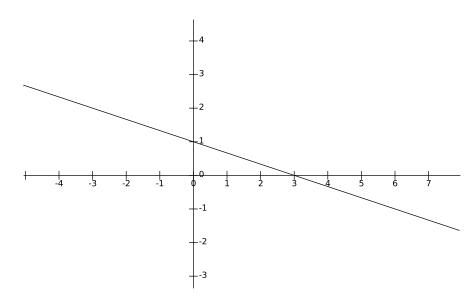


Figure 4: 3y + x = 3

6. Give the equation of the line that:

(a) <i>y</i> =	= 2x.	[1]
(b) <i>y</i> =	$=\frac{1}{5}(x-3).$	[2]
(c) <i>y</i> =	$= \frac{6}{7}(x+1).$	[2]
(d) <i>y</i> =	$=\frac{1}{3}(2-x).$	[2]
(e) <i>y</i> =	= 100.	[1]
7. Find th	ne points of intersection between the following lines:	

(a) $(0,2)$.	[2]
(b) $(-4, -11)$.	[2]
(c) $(-36, -14)$.	[2]
(d) $(\frac{1}{2}, -\frac{1}{6}).$	[2]

8. Consider the two *perpendicular* linear functions f(x) and g(x) pictured in the figure below. You are given that the *distance* between the points (-4, 2) and (0, a) is 5:

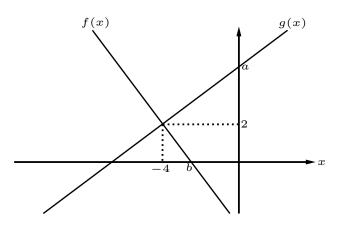
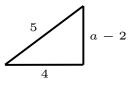


Figure 5: A plot of two linear functions f(x) and g(x).

(a) Consider the triangle below:



Using Pythagoras we form $5^2 = 4^2 + (a-2)^2$.

From which we conclude that a = 5.

(a cannot be -1 as we know that a is positive).

(b) Gradient $= \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 2}{0 - -4} = \frac{3}{4}.$

Now use $y - y_1 = m(x - x_1)$ on the point (0,5) $(x_1 = 0, y_1 = 5)$ to get:

$$y - 5 = \frac{3}{4}x$$

And so $y = \frac{3}{4}x + 5$ as required.

(c) We know that f(x) is perpendicular to g(x) and so we know that f(x) has gradient $-\frac{4}{3}$.

By using $y - y_1 = m(x - x_1)$ on the point (-4, 2) we get that: $y = -\frac{1}{3}(4x + 10)$ is the equation of f(x).

Now we simply substitute y = 0 into the above and rearrange to get that $x = b = -\frac{5}{2}$ as required.

[4]

[2]

[3]