AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C1 Coordinate Geometry
(Straight Lines) (Answers)

Name:

M M E Mathsmadeeasy.co.uk

Total Marks: /47

C1 - Coordinate Geometry - Straight Lines (ANSWERS)
MEI, OCR, AQA, Edexcel

1. Consider the linear function $f(x)$ plotted below.

Figure 1: A plot of a linear function $f(x)$.
(a) $y=2 x+1$.
2. You are given the line $f(x)=3 x$. Give the gradient of a straight line that is:
(a) 3 .
(b) $-\frac{1}{3}$.
3. Calculate the distance between the following points:
(a) 2 .
(b) $\sqrt{10}$.
(c) $\sqrt{53}$.
4. Calculate the midpoint between the following points:
(a) $(0,2)$.
(b) $\left(3, \frac{5}{2}\right)$.
(c) $\left(5+\frac{\pi}{2}, 0\right)$.
5. Sketch the following lines on separate axes, clearly indicating any intersections with the axes:
(a)

Figure 2: $y=3 x+5$
(b)

Figure 3: $y=\frac{1}{2} x-2$
(c)

Figure 4: $3 y+x=3$
6. Give the equation of the line that:
(a) $y=2 x$.
(b) $y=\frac{1}{5}(x-3)$.
(c) $y=\frac{6}{7}(x+1)$.
(d) $y=\frac{1}{3}(2-x)$.
(e) $y=100$.
7. Find the points of intersection between the following lines:
(a) $(0,2)$.
(b) $(-4,-11)$.
(c) $(-36,-14)$.
(d) $\left(\frac{1}{2},-\frac{1}{6}\right)$.
8. Consider the two perpendicular linear functions $f(x)$ and $g(x)$ pictured in the figure below. You are given that the distance between the points $(-4,2)$ and $(0, a)$ is 5 :

Figure 5: A plot of two linear functions $f(x)$ and $g(x)$.
(a) Consider the triangle below:

Using Pythagoras we form $5^{2}=4^{2}+(a-2)^{2}$.

From which we conclude that $a=5$.
(a cannot be -1 as we know that a is positive).
(b) Gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-2}{0--4}=\frac{3}{4}$.

Now use $y-y_{1}=m\left(x-x_{1}\right)$ on the point $(0,5)\left(x_{1}=0, y_{1}=5\right)$ to get:
$y-5=\frac{3}{4} x$.
And so $y=\frac{3}{4} x+5$ as required.
(c) We know that $f(x)$ is perpendicular to $g(x)$ and so we know that $f(x)$ has gradient $-\frac{4}{3}$.

By using $y-y_{1}=m\left(x-x_{1}\right)$ on the point $(-4,2)$ we get that:
$y=-\frac{1}{3}(4 x+10)$ is the equation of $f(x)$.
Now we simply substitute $y=0$ into the above and rearrange to get that $x=b=-\frac{5}{2}$ as required.

