Edexcel

A Level

A Level Mathematics

C1 Sequences and Series

Name:

M M E
 Mathsmadeeasy.co.uk

Total Marks: /28

1. Consider an arithmetic sequence with $k^{\text {th }}$ term given by $a_{k}=a+(k-1) d$. Prove that

$$
S=\sum_{k=1}^{n} a_{k}=\frac{1}{2} n(2 a+(n-1) d) .
$$

Hint: this is a proof that you may have seen in class. To begin, write out the sum term by term:

$$
S=a+(a+d)+(a+2 d)+(a+3 d)+\cdots+(a+(n-2) d+(a+(n-1) d) .
$$

Now compute $S+S$ using the above by adding the first term to the last term, the second term to the second-to-last term, the third term to the third-to-last term and so on. One the left hand side you have $2 s$, but what do you have on the right hand side? Can you make any simplifications by collecting like terms and rearranging?
2. Consider the sequence defined recursively by:

$$
u_{n+2}=3 u_{n+1}-u_{n}, \quad n \geq 1,
$$

where,

$$
u_{1}=1, \quad u_{2}=3 .
$$

(a) Calculate u_{3} and u_{4}.
(b) Calculate $\sum_{n=1}^{5} u_{n}$.
3. Consider the sequence defined recursively by:

$$
u_{n+2}=2 u_{n+1}-u_{n}, \quad n \geq 1,
$$

where,

$$
u_{1}=5, \quad u_{2}=7 .
$$

(a) Calculate u_{3}, u_{4} and u_{5}.
(b) Calculate $\sum_{n=1}^{5} u_{n}$.
(c) Write u_{n} in the form $u_{n}=a+b n$ for some coeficients a, b to be determined.
(d) Calculate $\sum_{n=1}^{100} u_{n}$.

