Edexcel

A Level

A Level Mathematics

C1 Sequences and Series
(Answers)

Name:

M
 M E
 Mathsmadeeasy.co.uk

Total Marks: /28

1. Consider an arithmetic sequence with $k^{t h}$ term given by $a_{k}=a+(k-1) d$. Prove that

$$
S=\sum_{k=1}^{n} a_{k}=\frac{1}{2} n(2 a+(n-1) d) .
$$

To begin, write out the sum term by term:

$$
S=a+(a+d)+(a+2 d)+(a+3 d)+\cdots+(a+(n-2) d+(a+(n-1) d) .
$$

Now compute $S+S$ using the above by adding the first term to the last term, the second term to the second-to-last term, the third term to the third-to-last term and so on. To make this easier to visualise we may write:

$$
\begin{array}{lll}
S=a & +(a+d) & +\cdots+(a+(n-2) d+(a+(n-1) d) . \\
S=(a+(n-1) d)+(a+(n-2) d)+\cdots+(a+d) & +a . \tag{2}
\end{array}
$$

We now add both lines together to obtain:

$$
2 S=(2 a+(n-1) d)+(2 a+(n-1) d)+\cdots+(2 a+(n-1) d)+(2 a+(n-1) d),
$$

Where we note that we simply have n lots of $(2 a+(n-1) d)$ on the right. And so we write:

$$
2 S=n(2 a+(n-1) d),
$$

which when rearranged yields:

$$
S=\frac{1}{2} n(2 a+(n-1) d),
$$

as required.
2. Consider the sequence defined recursively by:

$$
u_{n+2}=3 u_{n+1}-u_{n}, \quad n \geq 1
$$

where,

$$
u_{1}=1, \quad u_{2}=3
$$

(a) $u_{3}=8$ and $u_{4}=21$.
(b) We first calculate $u_{5}=55$, then $\sum_{n=1}^{5} u_{n}=1+3+8+21+55=88$.
3. Consider the sequence defined recursively by:

$$
u_{n+2}=2 u_{n+1}-u_{n}, \quad n \geq 1
$$

where,

$$
u_{1}=5, \quad u_{2}=7
$$

(a) $u_{3}=9, u_{4}=11$ and $u_{5}=13$.
(b) $\sum_{n=1}^{5} u_{n}=5+7+9+11+13=45$.
(c) We find the $n^{t h}$ term of the sequence to be $u_{n}=2 n+3$.
(d) This is a hard question. To calculate this sum we adopt the method used in question 1).

Let $S=\sum_{n=1}^{100} u_{n}$. We write this out term by term as:

$$
\begin{equation*}
S=5+7+9+11+\cdots+201+203 . \tag{3}
\end{equation*}
$$

Now we rewrite S again but this time order the terms from largest to smallest rather than smallest to largest:

$$
\begin{equation*}
S=203+201+199+197+\cdots+7+5 . \tag{4}
\end{equation*}
$$

We now add these two lines together term by term (in other words we do (3)+(4)) to get:

$$
2 S=208+208+208+208+\cdots+208+208
$$

Now there are 100 terms on the right hand side and so we have:

$$
2 S=100 \times 208
$$

which we rearrange to get:

$$
S=50 \times 208=10400
$$

Therefore we get the answer:

$$
S=\sum_{n=1}^{100} u_{n}=10400
$$

