

C1 - Differentiation OCR, AQA, Edexcel

1. For each of the following functions calculate $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$:

2.

3.

(a) $y = x$.	[2]
(b) $y = x^{\frac{1}{3}}$.	[2]
(c) $y = \frac{4}{3}x^3$.	[2]
(d) $y = 5x^4 + 3x + 20.$	[3]
(e) $y = x(x-1)$.	[3]
(f) $3x^2 + 2y = 108$.	[3]
(g) $y = 2x(x-3)(x-5)$.	[3]
(h) $y = \frac{x^2 + 3x + 2}{x}$.	[3]
(i) $y = \frac{3x^3 + 6\sqrt{x} + 3}{3x^{\frac{1}{4}}}.$	[3]
(j) $xy - 2y - 2x^3 + 4x^2 = 0$ (for $x \neq 2$).	[4]
Find the gradients of the following functions at the speficied points:	
(a) $y = 2x^2$ at $x = 3$.	[2]
(b) $y = 3x^2 - \frac{2}{3}x + 1$ at $x = 0$.	[3]
(c) $xy - y - 2x^2 + 2x = 0$ at $x = 2$.	[4]
Consider the function $f(x) = x^2 - 2x + 4$:	
(a) By finding $f'(x)$ show that $f(x)$ has a stationary point at $(1,3)$.	[5]
(b) Determine the nature of the stationary point.	[2]
(c) By writing $f(x)$ in the form $f(x) = (x+a)^2 + b$, verify that $f(x)$ has a stationary point at $(1,3)$.	[2]
(d) Calculate the gradient of $f(x)$ at $x = 4$.	[2]

(e) Hence, or otherwise show that the equation of the tangent line to f(x) at x = 4 is g(x) = 6(x - 2), where g(x) denotes the function of the tangent line. [5]

4.	Consider the function $f(x) = \frac{2}{3}x^3 + bx^2 + 2x + 3$, where b is some undetermined coefficient:	
	(a) Find $f'(x)$ and $f''(x)$.	[4]
	(b) You are given that $f(x)$ has a stationary point at $x = 2$. Use this information to find b.	[3]
	(c) Find the <i>coordinates</i> of the other stationary point.	[2]
	(d) Determine the nature of both stationary points.	[3]