AQA, Edexcel, OCR

A Level

A Level Mathematics

C1 Differentiation

Name:

M
 Mathsmadeeasy.co.uk

Total Marks: /65

C1 - Differentiation
 OCR, AQA, Edexcel

1. For each of the following functions calculate $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$:
(a) $y=x$.
(b) $y=x^{\frac{1}{3}}$.
(c) $y=\frac{4}{3} x^{3}$.
(d) $y=5 x^{4}+3 x+20$.
(e) $y=x(x-1)$.
(f) $3 x^{2}+2 y=108$.
(g) $y=2 x(x-3)(x-5)$.
(h) $y=\frac{x^{2}+3 x+2}{x}$.
(i) $y=\frac{3 x^{3}+6 \sqrt{x}+3}{3 x^{\frac{1}{4}}}$.
(j) $x y-2 y-2 x^{3}+4 x^{2}=0 \quad($ for $x \neq 2)$.
2. Find the gradients of the following functions at the speficied points:
(a) $y=2 x^{2}$ at $x=3$.
(b) $y=3 x^{2}-\frac{2}{3} x+1$ at $x=0$.
(c) $x y-y-2 x^{2}+2 x=0$ at $x=2$.
3. Consider the function $f(x)=x^{2}-2 x+4$:
(a) By finding $f^{\prime}(x)$ show that $f(x)$ has a stationary point at $(1,3)$.
(b) Determine the nature of the stationary point.
(c) By writing $f(x)$ in the form $f(x)=(x+a)^{2}+b$, verify that $f(x)$ has a stationary point at $(1,3)$.
(d) Calculate the gradient of $f(x)$ at $x=4$.
(e) Hence, or otherwise show that the equation of the tangent line to $f(x)$ at $x=4$ is $g(x)=6(x-2)$, where $g(x)$ denotes the function of the tangent line.
4. Consider the function $f(x)=\frac{2}{3} x^{3}+b x^{2}+2 x+3$, where b is some undetermined coefficient:
(a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) You are given that $f(x)$ has a stationary point at $x=2$. Use this information to find b.
(c) Find the coordinates of the other stationary point.
(d) Determine the nature of both stationary points.
