

1. For each of the following functions calculate $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$:

(a)
$$\frac{dy}{dx} = 1, \qquad \frac{d^2y}{dx^2} = 0.$$
 [2]

(b)
$$\frac{dy}{dx} = \frac{1}{3}x^{-\frac{2}{3}}, \qquad \frac{d^2y}{dx^2} = -\frac{2}{9}x^{-\frac{5}{3}}.$$
 [2]

(c)
$$\frac{dy}{dx} = 4x^2$$
, $\frac{d^2y}{dx^2} = 8x$. [2]

(d)
$$\frac{dy}{dx} = 20x^3 + 3, \qquad \frac{d^2y}{dx^2} = 60x^2.$$
 [3]

(e)
$$\frac{dy}{dx} = 2x - 1, \qquad \frac{d^2y}{dx^2} = 2.$$
 [3]

(f)
$$\frac{dy}{dx} = -3x, \qquad \frac{d^2y}{dx^2} = -3.$$
 [3]

(g)
$$\frac{dy}{dx} = 6x^2 - 32x + 30, \qquad \frac{d^2y}{dx^2} = 12x - 32.$$
 [3]

(h)
$$\frac{dy}{dx} = 1 - \frac{2}{x^2}, \qquad \frac{d^2y}{dx^2} = \frac{4}{x^3}.$$
 [3]

(i)
$$\frac{dy}{dx} = \frac{1}{4} \left(11x^{\frac{7}{4}} + 2x^{-\frac{3}{4}} - x^{-\frac{5}{4}} \right), \qquad \frac{d^2y}{dx^2} = \frac{1}{16} \left(77x^{\frac{3}{4}} - 6x^{-\frac{7}{4}} + 5x^{-\frac{9}{4}} \right).$$
 [3]

(j)
$$\frac{dy}{dx} = 4x$$
, $\frac{d^2y}{dx^2} = 4$. [4]

2. Find the gradients of the following functions at the speficied points:

(b)
$$-\frac{2}{3}$$
. [3]

3. Consider the function $f(x) = x^2 - 2x + 4$:

(a)	First we verify that the point $(1,3)$ lies on the curve which indeed it does. Nwo $f'(x) = 2x - 2$ and $f'(1) = 0$ and so $(1,3)$ is a stationary point.	[5]
(b)	f''(x) = 2 > 0 therefore the stationary point is a minimum.	[2]
(c)	Completing the square yields $f(x) = (x-1)^2 + 3$ and so $(1,3)$ is the minimum point of the quadratic; it is a stationary point.	[2]
(d)	f'(4) = 6 therefore the gradient is 6.	[2]

(e) When x = 4, f(4) = 12, so the point (4, 12) lies on the curve. Now we use coordinate geometry on the point (4, 12) using a gradient of 6 to obtain the tangent line g(x) = 6(x - 2) as required.

[5]

- 4. Consider the function $f(x) = \frac{2}{3}x^3 + bx^2 + 2x + 3$, where b is some undetermined coefficient:
 - (a) $f'(x) = 2x^2 + 2bx + 2$ and f''(x) = 4x + 2b.
 - (b) f(x) has a stationary point at x = 2 therefore we know that f'(2) = 0, where f'(2) = 0 = 10 + 4b. Rearranging gives $b = -\frac{5}{2}$.
 - (c) We need to solve f'(x) = 0. Thus we need to solve the quadratic $2x^2 5x + 2 = 0$. The solutions are x = 2 and $x = \frac{1}{2}$. And so the other stationary point has coordinates $(\frac{1}{2}, \frac{83}{24})$. [2]

[4]

[3]

[3]

(d) f''(2) = 3 > 0 and $f''(\frac{1}{2}) = -3 < 0$, therefore the point at x = 2 is a minimum and the point at $x = \frac{1}{2}$ is a maximum point.