AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics
 C1 Curve Sketching (Answers)

Name:

M

1. Consider the function $f(x)=x^{2}+x-6$:
(a) $x=-3$ or $x=2$.
(b) $f(0)=-6$.
(c) We simply complete the square to get $f(x)=\left(x+\frac{1}{2}\right)^{2}-\frac{25}{4}$ and hence $f(x)$ has a line of symmetry at $x=-\frac{1}{2}$.
(d) The minimum point is $\left(-\frac{1}{2},-\frac{25}{4}\right)$.
(e)

Figure 1: $f(x)=x^{2}+x-6$
(f) The curve is translated by $\binom{3}{1}$, so we know that $g(x)=f(x-3)+1$. Hence, using part (c) we write $g(x)=\left(x-\frac{5}{2}\right)^{2}-\frac{21}{4}$. Expanding gives $g(x)=x^{2}-5 x+1$ as required.
2. Consider the function $f(x)=x^{3}+3 x^{2}-x-3$:
(a) $f(-3)=0$.
(b) Since $f(-3)=0$ we know that $(x+3)$ must be a factor of $f(x)$. We proceed with polynomial division:

$$
x+3) \begin{array}{r}
x^{2}-1 \\
\begin{array}{r}
x^{3}+3 x^{2}-x-3 \\
-x^{3}-3 x^{2} \\
-x-3 \\
-x+3
\end{array}
\end{array}
$$

And so we may write $f(x)=(x+3)\left(x^{2}-1\right)$, which we can factorise further to obtain:

$$
f(x)=(x+3)(x+1)(x-1)
$$

(c)

Figure 2: $f(x)=x^{3}+3 x^{2}-x-3$
(d)

$$
\begin{aligned}
g(x) & =f(x+2)+1 \\
& =((x+2)+3)((x+2)+1)((x+2)-1) \\
& =(x+5)(x+3)(x+1)+1 \\
& =x^{3}+9 x^{2}+23 x+16
\end{aligned}
$$

as required.
(e) Translation by $\binom{-2}{1}$.

