

C1 - Coordinate Geometry - Curves MEI

1. Sketch the following quadratic functions, clearly indicating the points of any intersections with the axes and the locations of any minimum/maximum points:

(a) $y = x^2 + 2x + 1$.	[2]
(b) $y = -(x^2 + x)$.	[2]
(c) $4x^2 + 14x + 12$.	[2]

- 2. Find the point(s) of intersection between the following curves:
 - (a) $y = x^2 + 2x$ and y = -1. [2]
 - (b) $y = x^2 10$ and y = -3x. [2]
 - (c) $y = x^2 4x + 1$ and y = 4x 11. [2]
 - (d) $y = 3x^2 + 3x 5$ and $y = 3x^2 + x 3$. [3]
 - (e) $y = 4x^2 10x 13$ and $y = 3x^2 8x 10$. [3]
 - (f) $y = 8x^2 + 6x + 7$ and $y = 6x^2 + 2x + 10$. [3]

3. Describe the following curves:

(a) $y = 3x + 2$.	[1]
(b) $y = x^2 + 2x + 1$.	[2]
(c) $y = x^2 + 20x$.	[2]
(d) $3x - y = 1$.	[1]
(e) $x = \frac{y}{2}$.	[1]
(f) $x^2 + y^2 = 1$.	[1]
(g) $x^2 + y^2 = 25.$	[1]
(h) $(x-2)^2 + (y-5)^2 = 4.$	[2]
(i) $x^2 + (y-1)^2 = 5.$	[2]
(j) $x^2 + y^2 - 2x - 4y + 1 = 0.$	[3]
(k) $y^2 = 24 + 10x - x^2$.	[3]

4. The figure below gives a plot of a circle with unknown equation. You are given that the centre of the circle is (3, 4) and that the point $(4, 4 + \sqrt{3})$ lies on the circle.

- (a) Find the equation of the circle.
- (b) Verify that the point (3, 2) lies on the circle.
- (c) Let L be the diameter of the circle that has endpoint (4, 4 + √3). Find the other endpoint. (*Hint: find the equation of the line passing through* (3, 4) and (4, 4 + √3) and find the points where this intersects the circle).
- (d) Calculate the equation of the line tangent to the circle at the point $(4, 4 + \sqrt{3})$.
- (e) Suppose that the circle is now translated by $\begin{pmatrix} -3\\0 \end{pmatrix}$. Write down the equation of the translated circle. [1]

[5] [2]

[3]