

- 1. Sketch the following quadratic functions, clearly indicating the points of any intersections with the axes and the locations of any minimum/maximum points:

Figure 1: $y = x^2 + 2x + 1$

(b)

(a)

Figure 2: $y = -(x^2 + x)$

[2]

[2]

Figure 3: $4x^2 + 14x + 12$

2. Find the point(s) of intersection between the following curves:

(a) $(-1, -1)$.	[2]
(b) $(-5, 15)$ and $(2, -6)$.	[2]
(c) $(2, -3)$ and $(6, 13)$.	[2]
(d) $(1,1)$.	[3]
(e) $(-1,1)$ and $(3,-7)$.	[3]
(f) $\left(\sqrt{\frac{5}{2}} - 1, 29 - 5\sqrt{10}\right)$ and $\left(-1 - \sqrt{\frac{5}{2}}, 29 + 5\sqrt{10}\right)$.	[3]
Describe the following curves:	
(a) A straight line of gradient 3 with intercept 2.	[1]

(b)	A parabola with minimum point $(-1,0)$ and intercept 1.	[2]
(c)	A parabola with minimum point $(-10, -100)$ and intercept 0.	[2]
(d)	A straight line of gradient 3 and intercept -1 .	[1]
(e)	A straight line of gradient 2 that passes through the origin.	[1]
(f)	A circle centred at the origin of radius 1.	[1]

(g) A circle centred at the origin of radius 5. [1]

3.

- (h) A circle centred at (2,5) of radius 2. [2]
 (i) A circle centred at (0,1) of radius √5. [2]
 (j) A circle centred at (1,2) of radius 2. (Complete the square to get it in the correct form) [3]
 (k) A circle centred at (5,0) of radius 7. (Complete the square to get it in the correct form) [3]
- 4. The figure below gives a plot of a circle with unknown equation. You are given that the centre of the circle is (3, 4) and that the point $(4, 4 + \sqrt{3})$ lies on the circle.

(a) We know that the centre of the circle is (4,3) and the so the circle must have equation:

$$(x-3)^2 + (y-4)^2 = r^2,$$

for some unknown radius r. To find r we simply substitute the point $(4, 4 + \sqrt{3})$ into the equation. This yields:

$$(4-3)^2 + (4+\sqrt{3}-4)^2 = r^2,$$

Thus, we have that r = 2, and so the equation of the circle is:

$$(x-3)^2 + (y-4)^2 = 4.$$

[5]

[2]

- (b) Simply substitute (3, 2) into the above equation and check that both sides agree.
- (c) There are a few ways of getting the answer to this question but we will follow the method suggested in the hint. The line through (3, 4) and $(4, 4 + \sqrt{3})$ is calculated to be $y = \sqrt{3}x 3\sqrt{3} + 4$.

We now substitute $y = \sqrt{3}x - 3\sqrt{3} + 4$ into $(x-3)^2 + (y-4)^2 = 4$. to find the points of intersection:

$$(x-3)^2 + (\sqrt{3}x - 3\sqrt{3} + 4 - 4)^2 = 4$$

which simplifies to $4x^2 - 24x + 32 = 0$, with solutions x = 4 and x = 2.

The solution we are looking for is x = 2. We substitute x = 2 into the equation $y = \sqrt{3}x - 3\sqrt{3} + 4$ to get $y = 4 - \sqrt{3}$, to give the answer:

$$(2, 4 - \sqrt{3}).$$

(d) The tangent line is perpendicular to $y = \sqrt{3}x - 3\sqrt{3} + 4$ and so we know that the tangent line has gradient $-\frac{1}{\sqrt{3}}$.

Using $y - y_1 = m(x - x_1)$ on the point $(4, 4 + \sqrt{3})$ we get that the tangent line is:

$$y = -\frac{1}{\sqrt{3}}x + \frac{12 + 7\sqrt{3}}{3}.$$

(e) The circle has been shifted to the left by 3 units. All we need to do is to replace x with x + 3 in the equation of the circle. This gives:

$$((x+3)-3)^2 + (y-4)^2 = 4$$

which simplifies to give the answer:

,

$$x^2 + (y - 4)^2 = 4.$$

[1]

[4]

[3]