AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C1 Coordinate Geometry
(Curves) (Answers)

Name:

M

C1 - Coordinate Geometry - Curves (ANSWERS)
MEI, OCR, AQA, Edexcel

1. Sketch the following quadratic functions, clearly indicating the points of any intersections with the axes and the locations of any minimum/maximum points:
(a)

Figure 1: $y=x^{2}+2 x+1$
(b)

Figure 2: $y=-\left(x^{2}+x\right)$
(c)

Figure 3: $4 x^{2}+14 x+12$
2. Find the point(s) of intersection between the following curves:
(a) $(-1,-1)$.
(b) $(-5,15)$ and $(2,-6)$.
(c) $(2,-3)$ and $(6,13)$.
(d) $(1,1)$.
(e) $(-1,1)$ and $(3,-7)$.
(f) $\left(\sqrt{\frac{5}{2}}-1,29-5 \sqrt{10}\right)$ and $\left(-1-\sqrt{\frac{5}{2}}, 29+5 \sqrt{10}\right)$.
3. Describe the following curves:
(a) A straight line of gradient 3 with intercept 2.
(b) A parabola with minimum point $(-1,0)$ and intercept 1 .
(c) A parabola with minimum point $(-10,-100)$ and intercept 0 .
(d) A straight line of gradient 3 and intercept -1 .
(e) A straight line of gradient 2 that passes through the origin.
(f) A circle centred at the origin of radius 1.
(g) A circle centred at the origin of radius 5 .
(h) A circle centred at $(2,5)$ of radius 2 .
(i) A circle centred at $(0,1)$ of radius $\sqrt{5}$.
(j) A circle centred at $(1,2)$ of radius 2. (Complete the square to get it in the correct form)
(k) A circle centred at $(5,0)$ of radius 7. (Complete the square to get it in the correct form)
4. The figure below gives a plot of a circle with unknown equation. You are given that the centre of the circle is $(3,4)$ and that the point $(4,4+\sqrt{3})$ lies on the circle.

(a) We know that the centre of the circle is $(4,3)$ and the so the circle must have equation:

$$
(x-3)^{2}+(y-4)^{2}=r^{2}
$$

for some unknown radius r. To find r we simply substitute the point $(4,4+\sqrt{3})$ into the equation. This yields:

$$
(4-3)^{2}+(4+\sqrt{3}-4)^{2}=r^{2}
$$

Thus, we have that $r=2$, and so the equation of the circle is:

$$
(x-3)^{2}+(y-4)^{2}=4
$$

(b) Simply substitute $(3,2)$ into the above equation and check that both sides agree.
(c) There are a few ways of getting the answer to this question but we will follow the method suggested in the hint. The line through $(3,4)$ and $(4,4+\sqrt{3})$ is calculated to be $y=\sqrt{3} x-3 \sqrt{3}+4$.

We now substitute $y=\sqrt{3} x-3 \sqrt{3}+4$ into $(x-3)^{2}+(y-4)^{2}=4$. to find the points of intersection:

$$
(x-3)^{2}+(\sqrt{3} x-3 \sqrt{3}+4-4)^{2}=4
$$

which simplifies to $4 x^{2}-24 x+32=0$, with solutions $x=4$ and $x=2$.

The solution we are looking for is $x=2$. We substitute $x=2$ into the equation $y=\sqrt{3} x-3 \sqrt{3}+4$ to get $y=4-\sqrt{3}$, to give the answer:

$$
(2,4-\sqrt{3})
$$

(d) The tangent line is perpendicular to $y=\sqrt{3} x-3 \sqrt{3}+4$ and so we know that the tangent line has gradient $-\frac{1}{\sqrt{3}}$.

Using $y-y_{1}=m\left(x-x_{1}\right)$ on the point $(4,4+\sqrt{3})$ we get that the tangent line is:

$$
y=-\frac{1}{\sqrt{3}} x+\frac{12+7 \sqrt{3}}{3}
$$

(e) The circle has been shifted to the left by 3 units. All we need to do is to replace x with $x+3$ in the equation of the circle. This gives:

$$
((x+3)-3)^{2}+(y-4)^{2}=4
$$

which simplifies to give the answer:

$$
x^{2}+(y-4)^{2}=4
$$

