AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C1 Algebra (Answers)

Name:

M
 Mathsmadeeasy.co.uk

Total Marks: /49

```
C1 - Algebra (Answers)
MEI, OCR, AQA, Edexcel
```

1. Let n and m be two numbers. Complete the statements below by writing the correct symbol $(\Rightarrow, \Leftarrow$, or $\Leftrightarrow)$ onto the dotted lines below.
(a) \Leftrightarrow.
(b) \Leftarrow.
(The arrow is only one way because \Rightarrow does not hold for negative numbers smaller than -2).
2. True.
3. Consider the quadratic function $f(x)=2 x^{2}+x+1$.
(a) The discriminant is the quantity $b^{2}-4 a c$ in the quadratic formula.

$$
b^{2}-4 a c=-7 .
$$

The discriminant is less than 0 . This means that the equation has no real solutions. It also means that the graph of $f(x)$ does NOT intersect the x axis.
(b) $2 x^{2}+x+1$
$2\left(x^{2}+\frac{1}{2} x\right)+1$
$2\left(\left(x+\frac{1}{4}\right)^{2}-\frac{1}{16}\right)+1$
$2\left(x+\frac{1}{4}\right)^{2}+\frac{7}{8}$
Hence the minimum point of $f(x)$ is $\left(-\frac{1}{4}, \frac{7}{8}\right)$.
(c)

7. Let $g(x)=x^{2}-4 x+3$ and $h(x)=2 x-2$.
(a) $x^{2}-4 x+3=2 x-2$
$x^{2}-6 x+5=0$
$(x-1)(x-5)=0$
Hence $x=1$ or $x=5$
Substituting these values into either function gives the coordinates $(1,0)$ and $(5,8)$.
(b) $g(x)=x^{2}-4 x+3$
$=(x-2)^{2}-4+3$
$=(x-2)^{2}-1$
Hence the minimum point of $g(x)$ is $(2,-1)$.
(c)

8. From the plot of $g(x)$, we see immediately that the function is less than (or equal to) 0 when $1 \leq x \leq 3$.

9. $x>-5$.
10. $\sqrt{3}$. (multiply the top and bottom of the fraction by $\sqrt{3}$ and simplify)
11. $\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}$.
$=\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$
$=\sqrt{2}-1$.
12. $\frac{1}{16}$.
13. $\frac{c}{2 b}$.
14. $3^{-2}=\left(\frac{1}{3}\right)^{2}$.
$=\frac{1}{9}$
15. 1. (Any number to the power 0 is 1)
16. 6.
17. Consider the function $f(x)$ plotted below You are given that $f(x)$ is a quadratic function of the form $f(x)=x^{2}+a x+b$.
(a) Use points $(0,0)$ and $(3,0)$.
$f(0)=0$ so we have that $b=0$.
$f(3)=0$ thus $0=3^{2}+3 a$
rearranging gives $a=-3$.
(b) $f(x)=x^{2}-3 x$.
$=(x-1.5)^{2}-2.25$
Hence $f(x)$ has a line of symmetry at $x=1.5$.

