

C1 - Algebra (Answers) MEI, OCR, AQA, Edexcel

1. Let *n* and *m* be two numbers. Complete the statements below by writing the correct symbol $(\Rightarrow, \Leftarrow, \text{ or } \Rightarrow)$ onto the dotted lines below.

(a)
$$\Leftrightarrow$$
. [1]

[1]

[1]

[3]

[3]

- (b) \Leftarrow . (The arrow is only one way because \Rightarrow does not hold for negative numbers smaller than -2).
- 2. True.

3.
$$x = 3$$
. [1]

4.
$$x = 1$$
 or $x = -2$. [2]

5.
$$y = \sqrt{\frac{1}{x-2}}$$

 $y^2 = \frac{1}{x-2}$
 $x - 2 = \frac{1}{y^2}$
 $x = \frac{1}{y^2} + 2.$
[2]

- 6. Consider the quadratic function $f(x) = 2x^2 + x + 1$.
 - (a) The discriminant is the quantity $b^2 4ac$ in the quadratic formula.

 $b^2 - 4ac = -7.$

The discriminant is less than 0. This means that the equation has no real solutions. It also means that the graph of f(x) does NOT intersect the x axis.

(b) $2x^2 + x + 1$ $2(x^2 + \frac{1}{2}x) + 1$ $2((x + \frac{1}{4})^2 - \frac{1}{16}) + 1$ $2(x + \frac{1}{4})^2 + \frac{7}{8}$ Hence the minimum point of f(x) is $(-\frac{1}{4}, \frac{7}{8})$.

7. Let $g(x) = x^2 - 4x + 3$ and h(x) = 2x - 2.

(a)
$$x^2 - 4x + 3 = 2x - 2$$

 $x^2 - 6x + 5 = 0$
 $(x - 1)(x - 5) = 0$
Hence $x = 1$ or $x = 5$
Substituting these values into either function gives the coordinates $(1, 0)$ and $(5, 8)$. [3]

(b)
$$g(x) = x^2 - 4x + 3$$

= $(x - 2)^2 - 4 + 3$
= $(x - 2)^2 - 1$

Hence the minimum point of g(x) is (2, -1).

[2]

[3] [2] 8. From the plot of g(x), we see immediately that the function is less than (or equal to) 0 when $1 \le x \le 3$. [2]

9. x > -5.

[2]

[2]

10. $\sqrt{3}$. (multiply the top and bottom of the fraction by $\sqrt{3}$ and simplify)

11. $\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}$.

$$= \frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$$

= $\sqrt{2}-1.$ [2]

12.
$$\frac{1}{16}$$
. [2]

13.
$$\frac{c}{2b}$$
. [3]

14.
$$3^{-2} = \left(\frac{1}{3}\right)^2$$
.
= $\frac{1}{9}$ [1]

15. 1. (Any number to the power 0 is 1)

16. 6.

17. Consider the function f(x) plotted below You are given that f(x) is a quadratic function of the form $f(x) = x^2 + ax + b$.

(a)	Use points $(0,0)$ and $(3,0)$.	
	f(0) = 0 so we have that $b = 0$.	
	$f(3) = 0$ thus $0 = 3^2 + 3a$	
	rearranging gives $a = -3$.	[4]
(b)	$f(x) = x^2 - 3x$	
(0)	f(x) = x 5 <i>x</i> . = $(x - 1.5)^2 - 2.25$	

Hence
$$f(x)$$
 has a line of symmetry at $x = 1.5$.

[3]

[1]

[3]