OCR

A Level

A Level Physics

ELECTRICAL CIRCUITS:
Complete Circuits 1 (Answers)

Name:

Mathsmadeeasy.co.uk

Total Marks: /30

1.

Total for Question 1: 8

(a) Define electrical work, W, in terms of potential difference, V, and charge, Q. Using this relationship, show that $P = I^2 R$

[2]

Solution: W = VQ

But, Q = It and $P = W/t \rightarrow P = VIt/t = VI$ From Ohm's law, $V = IR \rightarrow P = I^2R$

(b) The P.D. across a 5.0 Ω resistor is measured as 6.0 V. What power is it dissipating?

[2]

Solution: 7.2 W

[2]

(c) An LED is connected in series with an ammeter and a power supply. A voltmeter is connected across the LED. They read 2.2 A and 4.6 V. If it is left on for 1 hour and 15 minutes, how much work is done by the LED?

Solution: 45 kj

[2]

Solution: $y \propto 1/x$ graph i.e. nonlinear decrease

2. This question exploits Kirchoff's laws to determine the resistances of several components in Figure 1.

Total for Question 2: 10

[2]

[1]

[1]

Figure 1: A circuit containing two resistors, a voltmeter, an ammeter, a cell and a bulb.

Tom notes that the the bulb has an effective resistance of 5.0 Ω , that the voltmeter reads 2.0 V and that the ammeter reads 3.5 A.

(a) State Kirchoff's First Circuit Law. What implications does it have for the charge entering and leaving a circuit junction?

Solution: Sum of currents entering a junction equals the sum of currents leaving a junction i.e. $\Sigma I_{intojunction} = \Sigma I_{outofjunction}$ Since Q = It, the same conservation applies at a junction for charge.

(b) State Kirchoff's Second Circuit Law.

Solution: In a given closed loop, the sum of the potential differences is equal to the sum of the EMFs: $\Sigma PD_i = \Sigma EMF_i$

(c) Calculate R_1 .

Solution: 0.57Ω

[3] (d) Calculate R_2 . Solution: 6.7Ω

(e) Calculate the power dissipated by the bulb.

[1]

[2]

Solution: 20 W

(f) The bulb dissipates 75% of its power as heat and converts the rest to light. What is the efficiency of this circuit as a means of lighting?

Solution: 12%

3. Based on the conservation of charge and of energy, it is possible to derive several laws that dictate how the total effective resistance in a circuit varies when a combination of resistors are used in series and/or parallel.

Total for Question 3: 8

[3]

(a) Use Kirchoff's and Ohm's laws to derive an expression for the total effective resistance of two resistors, R_{1-2} , in series. [2]

Solution: From KSL and Ohm's : $IR = I_1R_1 + I_2R_2$ From KFL I is the same for all $\rightarrow R = R_1 + R_2$

(b) Using a similar technique, show that for two resistors in parallel, $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$. [3]

Solution: KFL: $I=I_1+I_2$ Incorporating Ohms: $\frac{V}{R}=\frac{V_1}{R_1}+\dots$ KSL: V of each loop is the same $\rightarrow V=V_1=V_2\rightarrow \frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}$

(c) Two resistors (1.0 Ω and 2.0 Ω) connected in parallel are linked in series to a 3.0 Ω resistor. All of this is in parallel with a fourth resistor. If the total effective resistance is 1.0 Ω , what is the resistance of the fourth resistor?

Solution: 1.4Ω

		Total for Question 4: 4
(a)	An LED.	[1
	Solution:	
(b)	A variable resistor.	[1
	Solution:	
(c)	A thermistor.	[1
	Solution:	
(d)	An LDR.	[1
	Solution:	

4. Draw the symbols for the following circuit components: