Edexcel

A Level

A Level Physics

Electromagnetism 1

Name:

Mathsmadeeasy.co.uk

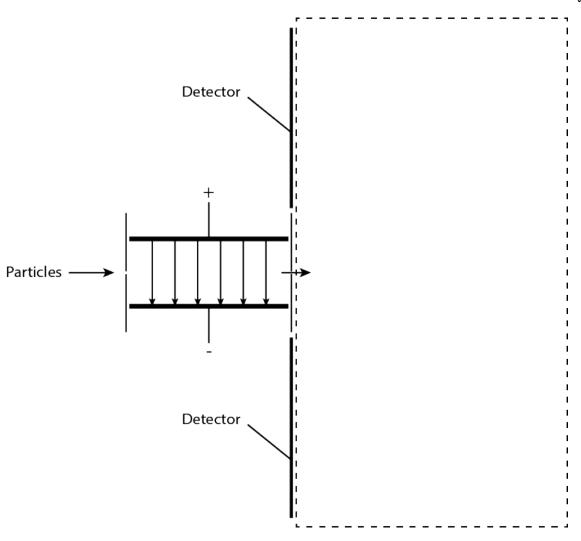
Total Marks: /30

1. A parallel-plate capacitor is made using two perfectly overlapping 5 m \times 5 m plates vacuum.	separated by a
	Total for Question 1: 12
(a) Sketch the magnetic field lines associated with the following:i. A solenoid. Indicate the direction in which charge carriers are moving.	[2]
ii. The Earth.	[1]
iii. Two 'north' poles adjacent to each other.	[1]

- (b) Which one of the following is correct?
 - $1 \text{ T} = 1 \text{ NAm}^{-1}$
 - $1 \text{ T}=1 \text{ Nm}^{-1} \text{A}^{-1}$
 - $1~{\rm T}{=}1~{\rm N}^{-1}{\rm m}^{-1}{\rm A}^{-1}$
- (c) A 4.0 cm length of copper wire, carrying a current of 3.0 A, is placed obliquely inside a uniform field of flux density B=0.4 T. It experiences a force of 10 mN. Calculate the angle between the wire and the field.

[1]

[3]


[4]

(d) Two magnets, with a 5 cm length of copper wire between them, are placed atop a digital balance. The wire is perpendicular to the direction of the magnetic field and is connected to an ammeter and a power supply. Measurements from the digital balance are recorded for different currents. By plotting a graph of the induced force (the change in the weight of the setup) against the current, calculate the magnetic flux density.

Current / A	Mass / g
0	4000.0
2	4001.2
4	4003.1
6	4005.2
8	4007.0
10	4008.8

2. A velocity selector, illustrated in the plot below, uses both electric and magnetic fields to select charged particles with a specific velocity. The electric field is present in the region between the two plates, across which the potential difference is 1 kV and the separation is 2 cm. The magnetic field, with a flux density of B=0.5 T, is present both in the velocity selector and in the region indicated by the dashed line.

Total for Question 2: 18

(a) Indicate on the diagram the direction of the magnetic field.

[1]

(b) By balancing the forces associated with the electric field and the magnetic field, calculate the velocity of the particles that escape through the right hand hole.	[4]
After leaving the selector, the particles are being subjected only to the forces associated with the magnetic	
field. (c) What effect will this have on the particles' motion? Justify your answer.	[2]
This scenario is exploited in mass spectrometers, which are used to measure the masses and relative abundances of different atomic species in a sample.	r.1
(d) Why is it important that all particles are travelling with the same speed when they enter the mass spectrometer.	[1]

 (e) Sketch, on the diagram above, the paths taken by the following particles: i. A negatively charged particle with a high mass. ii. A positively charged particle with a low mass. iii. A positively charged particle with a high mass. iv. A positively charged particle with a low mass. 	[2]
 (f) Calculate the radius of curvature of the following paths: i. A singly ionised sodium atom (atomic mass = 23). 	[2]
ii. A singly ionised potassium atom (atomic mass $= 39$).	[2]
(g) Calculate their separation when they reach the detector.	[2]

(h)	If the potassium atom had been given a positive charge of $+1e$, would your answer to the previous part change? If so, quantify the change.	[2]