AQA, OCR

A Leve

A Level Physics

Electromagnetism 2

Name:

M
 M E
 Mathsmadeeasy.co.uk

Total Marks: /30

1. This question explores the implications of Faraday's law.

Total for Question 1: 18
(a) State the requirement for an emf to be induced in a circuit that lacks a power supply.
(b) A coil with 500 turns as a core with a radius of 2 cm . It is placed in a field of 0.6 T such that there is an angle of 30° between the field and the normal to the cross-sectional area. Calculate the magnetic flux and the magnetic flux linkage.
(c) State Faraday's law, both in words and mathematically.
(d) A search coil has 4000 turns and a cross-sectional area of $1 \mathrm{~cm}^{2}$. Given that it induces an emf of 2 V when removed from the field in 1 ms , calculate the flux density.
(e) State Lenz's law and explain why it is a statement of energy conservation.
(f) Explain, using Faraday's law, why large current-carrying coils can be dangerous if the current is suddenly switched off.
2. AC generators can be understood using Faraday's law. The graph below shows how the flux linkage varies sinusoidally as a square coil with 1000 turns and a side length of 20 cm is rotated in a uniform field of flux density 0.8 T .

Total for Question 2: 6

(a) On the same set of axes, sketch the variation of the induced emf.
(b) The coil rotates by 15° in 2 s . Calculate the induced emf.
3. Without transformers the national grid would be much less efficient. However, they are not complex and can be understood using ideas developed above.
(a) State two mechanisms of undesirable power dissipation in a transformer.
(b) State the purpose of the core.
(c) Design a transformer that steps down the voltage by a factor of four.
(d) An ideal transformer has 100 primary coils and 400 secondary coils. Given that the current in the secondary coil is 3 A , calculate the current in the primary coil.

