GCSE MARKING SCHEME

SUMMER 2023

GCSE
MATHEMATICS - COMPONENT 1
(HIGHER TIER) C300UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2023 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE MATHEMATICS
SUMMER 2023 MARK SCHEME

5.* $(x=) \frac{360-290}{2} \mathrm{oe}$ $\begin{aligned} & x=35 \\ & y=180-(35+70) \text { or } x+70=180-y \\ & y=75 \end{aligned}$	M2 A1 m1 A1	Check diagram M1 for $x+75+x+70+85+60=360$ oe May be in stages e.g. $60+85=145,360-145=215,2 x+145=215$ Implied by 105 on the diagram. FT 'their derived 35 ' provided it is less than 110 and M2 previously awarded. FT
	(5)	
$\begin{aligned} & \text { 6.(a) } \\ & 16^{2}+\text { east }^{2}=20^{2} \\ & \text { east }^{2}=20^{2}-16^{2} \quad \text { or } \quad(\text { east }=) \sqrt{20^{2}-16^{2}} \\ & (\text { east }=) 12(\mathrm{~km}) \end{aligned}$	S1 M1 A1	Strategy of using Pythagoras; si by sight of e.g. 3, 4, 5 si by sight of $12,16,20$ or 3×4
6.(b) $\frac{20}{25}(\times 60)$ 48 (minutes)	M1 A1	May be seen in stages. e.g. (5 km in 12 minutes) $\times 4$
	(5)	
$\begin{aligned} & \text { 7. }{ }^{*} \text { (a) } \\ & x=0.7 \text { or } 0.8 \\ & y=1.4 \text { or } 1.5 \end{aligned}$	B1 B1	If no marks award SC1 for one of the following: - a value of x between 0.7 and 0.8 (including $7 / 9)$ and a value of y between 1.4 and 1.5 (including $1 \frac{4}{9}$ or $\frac{13}{9}$), - correct values given as coordinates in the working lines, - correct answers, written to 1 decimal place, reversed.
$\begin{aligned} & \text { 7.(b)(i) } \\ & -8 \end{aligned}$	B1	Allow (0, -8) or $y=-8$
$\begin{aligned} & \text { 7.(b)(ii) } \\ & (-1,-9) \end{aligned}$	B2	B1 for each. If no final coordinate given, allow: - $\quad \mathrm{B} 2$ for an unambiguous $x=-1$ AND $y=-9$ seen in the working - $\quad \mathrm{B} 1$ for an unambiguous $x=-1$ OR $y=-9$ seen in the working If no marks, award SC1 for $(-9,-1)$.
$\begin{aligned} & \text { 7.(b)(iii) } \\ & x=-4, x=2 \end{aligned}$	B1	If answer line is not completed, allow $-4,2$, but do not allow $(-4,2)$
	(6)	

8.*		
Sight of 70% and 5×10^{8} OR 71% and 5×10^{8} OR 70% and 5.1×10^{8}	B1	Not for sight of 71% and 5.1×10^{8}
$\begin{array}{r} 0.7 \times 5 \times 10^{8} \mathrm{oe} \\ \text { OR } 0.71 \times 5 \times 10^{8} \mathrm{oe} \\ \text { OR } 0.7 \times 5.1 \times 10^{8} \mathrm{oe} \end{array}$	M1	Allow for $0.71 \times 5.1 \times 10^{8}$ If 5×10^{8} or 5.1×10^{8} is written in ordinary form, condone a slip by a power of 10 for M1. $\text { e.g. } 0.7 \times 50000000$
$\begin{array}{\|ll} 3.5 \times 10^{8}\left(\mathrm{~km}^{2}\right) & \text { ISW } \\ \text { OR } 3.55 \times 10^{8} & \text { ISW } \\ \text { OR } 3.57 \times 10^{8} & \text { ISW } \end{array}$	A1	CAO Award B1 M1 A1 for an unsupported answer of $3.5 \times 10^{8}\left(\mathrm{~km}^{2}\right)$
	(3)	
$\frac{2}{8} \times \frac{2}{8} \text { or } \frac{1}{4} \times \frac{1}{4}$	M1	Or equivalent
$\frac{4}{64} \text { or } \frac{1}{16} \text { ISW }$	A1	Or equivalent
	(2)	
10. (a) $20 \times 170+30 \times 180(=8800)$	M2	M1 for either: - 20×170 (= 3400) - $30 \times 180(=5400)$
$\div 50$	m1	dep on M2
176 (cm)	A1	
10.(b) Valid explanation e.g. - 'Only three of the team have heights below the mean'. - 'Most of the team have heights above the mean'. - 'The mean is affected by extreme values such as 150 . - 'The 150 is much smaller than the other heights'.	E1	
	(5)	

11.*		Allow other letters or words throughout. Values may be in pence throughout
$4 a+c=9.5(0)$ AND $5 a+2 c=13$ oe	B1	
Method to eliminate an unknown e.g.	M1	FT their equations provided one is correct and the other is linear in the same pair of unknowns.
equal coefficients and subtraction or		Allow one error in one term, not in the equated coefficients.
rearranges one equation and substitutes into the other		Allow one error in rearrangement but not substitution.
Finds one unknown	A1	CAO; $a=2$ or $c=1.5(0)$
Finds the other unknown	A1	FT 'their a ' or 'their c ' used in one of their equations.
(£)9(.00) or $900(\mathrm{p})$	B1	Provided at least two of the previous four marks awarded, FT 3('their derived a^{\prime}) +2 ('their derived c^{\prime})
		If units are given, they must be correct.
		For candidates that are awarded B1 and use trials to find the values of a and c, award SC2 for a final answer of $(£) 9(.00)$ or $900(p)$.
	(5)	
$\begin{aligned} & \text { 12.(a) } \\ & y=4 x-5 \text { only indicated } \end{aligned}$	B1	
$\begin{aligned} & 12 .(\mathrm{b}) \\ & 9-3 \end{aligned}$		
$\frac{2 a-a}{2 a-}$ oesi	B1	
$\frac{9-3}{2 a-a}=\frac{3}{4} \times\left(\frac{2}{2}\right) \text { oe, si }$	M1	FT 'their derived gradient' providing numerator or denominator correct. $2 a-a=8$
		Award B1 M1 for change in $y=6$ and change in $x=8$.
$(a=) 8$	A1	CAO
	(4)	

| 13. (a)(i)
 10 | B1 | |
| :--- | :---: | :--- | :--- |
| $13 .($ a) (ii)
 $\frac{1}{9}$ | B2 | |

Alternative method 2		
Let final depth $=h$ $20 \times 20 \times h(=400 h)$	M1	
$0.9=\frac{5400}{400 h}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\text { M1 for } 0.9=\frac{5400}{\text { their volume' }}$
(original depth $=$) $h \times \frac{2}{3}$	M1	
10 (cm)	A1	
	(5)	
$\begin{gathered} \text { 16.(a) } \\ 13^{5} \end{gathered}$	B1	
$\begin{array}{r} \text { 16.(b) } \\ \frac{1}{2} \end{array}$	B2	B1 for sight of either: - $\left(\frac{1}{8}\right)^{\frac{1}{3}}$ - $\sqrt[3]{8^{-1}}$ oe
$\begin{aligned} & \text { 16.(c) } \\ & a=2, b=9 \end{aligned}$ OR $a=10, b=1$	B2	Allow embedded answers, provided not contradicted. B1 for one of the following: - $a=2$ - $a=10$ - $(\sqrt[a]{3})^{5} \mathrm{oe}$ - sight of $9 \sqrt{3}$
	(5)	

17. (a) Two valid, different criticisms e.g. - 'She has used the midpoint from each class (, not the upper, when plotting)' - 'She should have used the higher value from each group (for her plots, not the midpoint.)' AND - 'The first point should not be at $(0,0)$, (it should be at $(3,0)$.)' - 'The graph shows there is data between 0 and 3 (when there is none.)'	E2	One comment about the midpoint being used and the other comment about the plot at the origin. E1 for one valid criticism.
17.(b)(i) Frequency densities: $0 \cdot 2,0.9,1 \cdot 2,0.5,0.4 \mathrm{si}$ Fully correct histogram	B2 B2	B1 for either: - any 4 correct calculations from $6 \div 30,9 \div 10,12 \div 10,5 \div 10,8 \div 20$ - any 4 values correctly found. FT candidate's frequency density for B2 or B1 provided at least 3 frequency densities are correct. B1 for 3 or 4 correct bars; no gaps.
$\begin{aligned} & 17 . \text { (b)(ii) } \\ & (0.4 \times 30+1.5 \times 10+0.6 \times 5) \\ & \\ & 9 \end{aligned}$	M1 m1 A1	Check diagram $\begin{aligned} & 12+15+3 \\ & \text { or } 40-0.5 \times 0.6 \times 10-0.7 \times 10 \text { or } 40-3-7 \\ & \quad-21 \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline $$
\begin{aligned}
& \hline 18 .(\mathrm{a}) \\
& P \hat{R} S=125\left({ }^{\circ}\right)
\end{aligned}
$$ \& B1 \& Allow if marked on diagram

\hline $$
\begin{gathered}
O \widehat{P} R=\frac{2}{5} \times(360-(125+110)) \text { or } \\
125-\frac{3}{5} \times 125 \text { oe }
\end{gathered}
$$ \& B1 \&

\hline \multirow[t]{2}{*}{$50\left({ }^{\circ}\right)$} \& B1 \& Accept 50 : 75.

\hline \& \& If no marks, award SC1 for correct evaluation of $2 / 5 \times(250-$ 'their PRS') provided $90<P R S<180$.

\hline \multirow[t]{2}{*}{Alternative method

$P \hat{T} S=55\left({ }^{\circ}\right)$ AND $P \widehat{R} S=125\left({ }^{\circ}\right)$} \& \& Adding a $4^{\text {th }}$ point to the circumference

\hline \& B1 \& Allow if angles marked on diagram

\hline $$
O \widehat{P} R=\frac{2}{5} \times(360-(125+110)) \text { or }
$$ \& B1 \&

\hline $125-\frac{3}{5} \times 125$ oe \& \&

\hline $$
50\left({ }^{\circ}\right)
$$ \& B1 \& Accept 50 : 75.

\hline \multirow[t]{4}{*}{| 18.(b) |
| :--- |
| $a=b$ AND $c=d$ |
| (isosceles trapezium) |
| $a+d=180^{\circ}$ OR $b+c=180^{\circ}$ |
| (co-interior angles between parallel lines) |} \& \multirow{6}{*}{B3} \&

\hline \& \& | Complete proof. |
| :--- |
| At least two reasons must be provided. One of |

\hline \& \& B2 for a complete proof with no reasons.

\hline \& \& B2 for a complete proof with no reasons.

\hline \multirow[t]{2}{*}{| $a+c=180^{\circ} \text { OR } b+d=180^{\circ}$ |
| :--- |
| Opposite angles in a cyclic quadrilateral (add up to 180°) |} \& \& B1 for $a+c=180^{\circ}$ OR $b+d=180^{\circ}$ AND

\hline \& \& $$
a=b \text { AND } c=d
$$

$$
\text { OR } a+d=180^{\circ} \text { OR } b+c=180^{\circ}
$$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
19.(a) \\
\(y \propto \frac{1}{x^{2}}\) or \(y=\frac{k}{x^{2}}\) oe, si \\
\(3=\frac{k}{4^{2}} \quad\) or \(k=3 \times 4^{2} \quad\) or \(\quad k=48\)
\[
y=\frac{48}{x^{2}}
\]
\end{tabular} \& B1
M1

A1 \& | Allow $y \propto \frac{k}{x^{2}}$ |
| :--- |
| FT from $y \propto x^{2}$ or $y \propto \frac{1}{x^{n}}$ with $n>0$ and $n \neq 2$. M1 implies B1 (excluding FT case). |
| Correct answer implies all 3 marks. |
| Allow for $y=\frac{k}{x^{2}}$ AND $k=48$ seen. |

\hline $$
\begin{aligned}
& 19 .(\mathrm{b})(\mathrm{i}) \\
& \frac{48}{64} \text { oe, ISW }
\end{aligned}
$$ \& B1 \& FT 'their (a) provided M1 previously awarded.

\hline | 19.(b)(ii) |
| :--- |
| $\sqrt{\frac{48}{1200}}$ or $\sqrt{\frac{1}{25}}$ oe $\frac{1}{5}$ oe | \& M1

A1 \& FT 'their (a) provided M1 previously awarded.
CAO

\hline \& (6) \&

\hline \[
$$
\begin{aligned}
& 20 . \\
& 100 x-x=(3) 21 \cdot 21-(3) \cdot 21 \quad \text { oe } \\
& \frac{318}{99} \text { or }(3) \frac{21}{99} \\
& 3 \frac{7}{33}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 | \& May see unsupported $3 \frac{21}{99}$ for M1A1

\hline \& (3) \&

\hline $$
\begin{aligned}
& 21 \\
& (8 \sqrt{5}-2-2(\sqrt{5}+3)) \div 2 \\
& \text { OR } \quad 4 \sqrt{5}-1-(\sqrt{5}+3) \\
& 3 \sqrt{5}-4 \\
& (3 \sqrt{5}-4)(\sqrt{5}+3)=15+9 \sqrt{5}-4 \sqrt{5}-12 \\
& 5 \sqrt{5}+3\left(\mathrm{~cm}^{2}\right)
\end{aligned}
$$ \& M2

A1
M1

A1 \& | Condone missing brackets if A1 is awarded. |
| :--- |
| M1 for either: |
| - $8 \sqrt{5}-2-2(\sqrt{5}+3)(=6 \sqrt{5}-8)$ |
| - $2(\sqrt{5}+3)+2 x=8 \sqrt{5}-2$ |
| CAO |
| FT 'their $a \sqrt{5} \pm b$ ' providing $a \neq 0$ and $b \neq 0$. |
| Mark final answer. FT |

\hline \& (5) \&

\hline | 22. |
| :--- |
| $D O+O A+A C$ si $O R \quad D B+B C$ si $\begin{aligned} & -\frac{1}{2} \mathbf{b}+\mathbf{a}+\frac{1}{4}(\mathbf{b}-\mathbf{a}) \mathrm{OR} \\ & \frac{1}{2} \mathbf{b}-\frac{3}{4}(\mathbf{b}-\mathbf{a}) \end{aligned}$ |
| $\frac{3}{4} \mathbf{a}-\frac{1}{4} \mathbf{b} \quad$ or $\quad \frac{3 \mathbf{a}-\mathbf{b}}{4}$ | \& S1

M2

A1 \& | M1 for sight of one of the following: |
| :--- |
| - (DO =) $-\frac{1}{2} \mathbf{b}$ |
| - $\quad(\mathrm{AC}=) \frac{1}{4}(\mathbf{b}-\mathbf{a})$ |
| - (DB =) $\frac{1}{2} \mathbf{b}$ |
| - $\quad(B C=)-\frac{3}{4}(\mathbf{b}-\mathbf{a})$ |
| May be seen on diagram. |
| If S1 M1 then award SC1 for a final answer of $4 / 5 \mathbf{a}-3 / 10 \mathbf{b}$. |

\hline \& (4) \&

\hline
\end{tabular}

23. 9 $\times 1000$ $\div 60$ 150 (metres per minute) 7.2 (minutes)	M1 M1 A1 B1	Method marks can be awarded in either order CAO Mark final answer. FT from 'their 150' provided at least M1 previously awarded and their $150>60$
	(4)	
$\begin{aligned} & \text { 24.(a) } \\ & (x=) \frac{-(-8) \pm \sqrt{(-8)^{2}-4 \times 5 \times(-1)}}{2 \times 5} \\ & (x=) \frac{8 \pm \sqrt{84}}{10} \\ & (x=) \frac{4 \pm \sqrt{21}}{5} \end{aligned}$	M1 A1 A1	
$\begin{aligned} & 24 .(\mathrm{b}) \\ & 4 x=3 x(x-1)+2(x-1) \text { or } \\ & 4 x=(3 x+2)(x-1) \text { oe, si } \\ & 4 x=3 x^{2}+2 x-3 x-2 \text { or better } \\ & 3 x^{2}-5 x-2=0 \\ & (3 x+1)(x-2)(=0) \\ & x=-\frac{1}{3}, x=2 \end{aligned}$	M2 M1 A1 M1 A1	M1 for $\left(\frac{4}{x-1}\right)=\frac{3 x+2}{x}$ si Allow one error in expansion. CAO Allow for $(3 x-1)(x+2)$ FT 'their $3 x^{2}-5 x-2=0$ ' provided at least M2 previously awarded.
Alternative method		
$\begin{aligned} & 4=\left(3+\frac{2}{x}\right)(x-1) \\ & 4=3 x-3+\frac{2 x}{x}-\frac{2}{x} \\ & 4 x=3 x^{2}-3 x+2 x-2 \end{aligned}$	M1 M1 M1	Allow one error in expansion.
$3 x^{2}-5 x-2=0$	A1	CAO
$(3 x+1)(x-2)(=0)$	M1	Allow for $(3 x-1)(x+2)$ FT 'their $3 x^{2}-5 x-2=0$ ' provided at least M2 previously awarded.
$x=-\frac{1}{3}, x=2$	A1	
	(9)	

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
25.(a) \\
Correctly completed Venn diagram e.g. \\
OR \(0.7-0.3+0.1\) oe 0.5
\end{tabular} \& B2

B1 \& | B1 for either: |
| :--- |
| - 0.2 or 0.4 correctly placed in a Venn diagram or correctly identified, |
| - $0.7=0.3+P(B)-0.1$ |
| FT 'their 0.4 ' 0.1 . |

\hline | 25.(b) $1-P(A \cap B) \text { oe }$ |
| :--- |
| or correct region on Venn diagram indicated. 0.9 | \& S1

B1 \& | Implied by e.g. $1-0.1$ or $0.4+0.2+0.3$ |
| :--- |
| implies S1 |

\hline \& (5) \&

\hline
\end{tabular}

