

GCSE MARKING SCHEME

SUMMER 2023

GCSE
MATHEMATICS – COMPONENT 2
(FOUNDATION TIER)
C300U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2023 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE MATHEMATICS

SUMMER 2023 MARK SCHEME

Component 2: Foundation Tier	Mark	
1.(a) 60(p), 86(p), (£)1.85, (£)4.23 oe	B2	 Allow costs given in pounds or pence. B1 for one of the following: One of the costs chosen incorrectly from the table but placed correctly. Listing the correct items in the correct order e.g. fruit, cereal bar, coffee, salad. The correct values in the correct order but with incorrect units e.g. 0.60p. Three of the values placed in the correct order with one omission. The four costs ordered from biggest to smallest correctly. Note: Allow £0.86p
1.(b) 69(p) or (£)0.69	B2	If units are given, they must be correct. B1 for $(£)5.69$ or $569(p)$ or $(3.49 + 1.20 + 1) - 5$ If no marks, award SC1 for a correct saving following use of one incorrect item.
1.(c)(i) $8 \times (£)0.95$ or $8 \times 95(p)$ (£)7.6(0) 760(p)	M1 A1	Allow M1 if repeated addition of eight lots of 95p If units are given, they must be correct.
1.(c)(ii) 12.95 ÷ 1.85 = 7	M1 A1	Note: • Allow M1 A1 for an embedded answer of 1.85 × 7 = 12.95. • Award M1 A0 for 1.85 + 1.85 + 1.85 + 1.85 + 1.85 + 1.85 = 12.95 without sight of 7.

2.(a) The correct 4 squares shaded	B2	 B1 for one of the following: A symmetrical shape with the 4 correct squares and no more than 2 extra squares. 3 or 4 of the correct squares and no more than 1 incorrect square. 2 correct squares and no incorrect squares.
2.(b) The correct shape unambiguously indicated	B1	
2.(c) (Edges) 9 (Vertices) 6	B2	B1 for either correct.
		If no marks, award SC1 for reversed answers.
2.(d)		
All four of the remaining shapes matched correctly Rectangle Rhombus Trapezium Kite Hexagon	B2	B1 for three of the remaining shapes matched correctly OR for 2 correct with no errors.
	(7)	

0 (5)	ı	
3.(a) Correct inequality unambiguously indicated	B1	
$\frac{1}{7} \le \frac{1}{8} \qquad \frac{1}{7} \ge \frac{1}{8} \qquad \frac{1}{7} = \frac{1}{8} \qquad \left(\frac{1}{7} > \frac{1}{8}\right) \qquad \frac{1}{7} < \frac{1}{8}$		
3.(b)		
One third unambiguously indicated	B1	Note: If they circle an option and write something
and an an an angular say, manager		different on the answer line then the answer line
		takes precedence.
3 (0)		
3.(c) 2, 6, 9 in any order	B3	B2 for listing all six factors only (allow 18 to be
2, 0, 3 in any order		omitted and repeats).
		B1 for one of the following:
		Listing at least 3 correct factors with no
		incorrect values.
		Listing 4 or 5 correct factors with no more than 1 incorrect value.
		Three <u>different</u> numbers in the answer boxes
		with a sum of 17.
		Will a sam of the
	(5)	
4.(a)(i)		
	B1	Allow if internal lines are missing.
V V V		Allow alternative representations of the half
		square.
4.(a)(ii) 36 + 21 + 48 + 30 + 42 oe	M1	Allow M1 for attempting to add all the values for
30 + 21 + 40 + 30 + 42 00	IVII	Allow M1 for attempting to add all the values for the five days with at most one error.
177 (cupcakes)	A1	CAO
		If no marks, award SC1 for an unsupported
		answer in the range 174 to 180. Note: Unsupported 177 is awarded M1A1.
4.(b)		ivoie. Onsupported 177 is awarded WITAT.
A correct explanation e.g.	E1	Do not allow e.g.
'(17 is) not a multiple of 3'.		'Can't show 17 because one shape represents 12
'It cannot be divided by 3'. 'It goes up in 3's so cannot make 17'.		and two shapes represents 24'.
'3 doesn't go into 17'.		'It goes up in 12's'. '3 cannot make 17'.
'(17 is) not in the 3 times table'.		'17 is difficult to show'.
'5 would be difficult to show'.		'Each triangle is worth 3'.
'2 would be difficult to show'.		'It goes up in 3's'.
'It can show 15 or 18 (but not 17)'.		
	(4)	
	(4)	

	ı	T
5.(a)(i) 50·3	B1	Note: $\frac{503}{10}$ is awarded B0
5.(a)(ii) 5·4	B1	Allow embedded answer
5.(b) (Box =) 1·3 (kg)	B1	Answer lines take precedence.
$(5.5 - 1.3) \div 2$	M1	FT 'their 1·3' providing < 5·5.
(Ball =) 2·1 (kg)	A1	FT
	(5)	
6.(a) 0.22 × 250 = 55 ISW (for calculating value)	M1 A1	Or equivalent complete and correct method. Allow M1 A1 for an answer of £55
6.(b) 250 ÷ 5 × 2	M1	Or equivalent complete and correct method. May be seen in stages. Note: M0 if method seen but then spoiled e.g. 250 ÷ 5 × 2 - 55
= 100 ISW (for calculating value)	A1	If no marks, award SC1 for unsupported £20
6.(c)		,
250 - 55 - 100 or (1 - 0.22 - 0.4) × 250 oe	M1	FT 250 – 'their 55' – 'their 100', provided 'their 55' + 'their 100' < 250 and are a whole number of coins
= 95 (10p coins)	A1	FT. Sight of £9.50 implies M1 A1. May be seen in working.
$55 \times (\pounds)1 + 100 \times (\pounds) 0.20 + 95 \times (\pounds) 0.10$ (= £55 + £20 + £9.50)	M1	FT 'their derived 95', 'their 55' and 'their 100', provided 'their 55' + 'their 100' < 250 and are a whole number of coins
55 × 100(p) + 100 × 20(p) + 95 × 10(p) (= 5500p + 2000p + 950p)		Allow M1 A0 if inconsistent place value used unless corrected.
= (£) 84.5(0) or 8450(p)	A1	FT If units are given, they must be correct.
	(8)	

				1
7.(a) (Length =) 9 (cm)	B1	± 2 mm. May be	seen on diagrar	n.
$9 \times \frac{1}{2}$ or 9×0.5 or $9 \div 2$ or 9×50 oe	M1	FT 'their 9'		
= 4.5 (m) or 450 (cm)	A1	FT If units are given Note:	, they must be co	orrect.
			0	0
		Measurement	Conversion in	Conversion in
			metres	centimetres
		8.8	4.4	440
		8.9	4.45	445
		9.1	4.55	455
		9.2	4.6	460
7.(b) 1.7 ÷ $\frac{1}{2}$ or 1.7 ÷ 0.5 or 170 ÷ 50 oe	M1	FT 'their 50 cm' o Allow 170/50	or 'their 0.5 m' for	M1 only
= 3.4(cm)	A1	CAO. Final answ Note: 3.4m or 34		1.
	(5)			
8.(a) 19	B2	B1 for the two mi indicated 13 15 17 21 23		nambiguously
8.(b) The correct five numbers in any order 13 17 21 23 31	В3	 105 and cards At least t 5 of the r B1 for one of the A trial fin 	5 or 15 identified at least two trials wo trials finding numbers correctl following: ding the mean of correctly	s of the sum of 5 the mean of any y
	(5)			

9. 60° angle marked correctly on the diagram or indicated in working	B1	
360 - 90 - 90 - 60 (x =) 120 (°)	M1 A1	FT 'their 60' providing < 180 CAO
		Unsupported 120 (°) is awarded B1M1A1. Note: 360 ÷ 3 = 120 (°) is an incorrect method and is awarded M0 A0.
	(3)	
10.(a) Aaron indicated with e.g.	B1	
(28 km is) between 17 and 18 miles (inclusive) or		
(15 miles is) 24 km or		Allow justification indicated on the graph. If both
'Aaron ran 4km more (than Jenny)'		conversions are carried out, then they must both be correct.
10.(b)		
A clear method shown e.g.	M1	Allow M1 for e.g.
		6miles = 10km AND 10 × 6 = 60km
12 miles is 19(.2)km AND 19(.2) × 3, or		
18 miles is 29 km AND 29 × 2, or 36 × 8 ÷ 5 oe		
36 × 8 ÷ 5 0e		
Accept answers in the range 54 – 58(km) inclusive.	A1	Not from incorrect working. Note: Unsupported answers in the range 54 – 58(km) are awarded M1 A1.
	(3)	
11.(a)	(0)	
7x + 24	B2	Mark final answer B1 for expanding bracket correctly $4x + 24$ or B1 for $7x + k$ providing $k \ne 0$
11.(b)		
$(f =)^{2}15.3$	B1	Allow embedded answer
11.(c)		
() 0.75	DO	B1 for $\frac{3\times(24+2)}{8}$ or $\frac{3\times26}{8}$ or $\frac{78}{8}$
(x =) 9.75 or 9.34 or 39/4	B2	8 8 8 3×24+3×2 72+6
		or $\frac{3\times24+3\times2}{8}$ or $\frac{72+6}{8}$ may be seen in stages
		-
	(5)	
12.(a)	BO	D4 for 9.76(9)
8.77	B2	B1 for 8·76(8)
		If no marks, award SC1 for an answer of 4.84
12.(b)	†	
0.06	B1	Do not allow trailing zeros e.g. 0.06000
	(3)	

13.(a)		
Correctly plotting all 5 points	B2	And no extra plots B1 for any 3 or 4 points plotted correctly and not more than 5 points plotted in total or for 5 points plotted correctly with at most 1 extra incorrect plot
13.(b) Point (0.5,38) indicated	B1	
13.(c) A valid comment e.g.	B1	Do not allow e.g.
'The more hours of exercise someone does, the lower their resting heart rate'. 'The less exercise someone does, the higher their resting heart rate'. 'There is a negative correlation'.		'It is negative'. 'The heart rate is lower when you exercise'. 'After each hour of exercise, the resting heart rate drops'. 'As exercise increases, bpm decreases' 'The more exercise someone does, the lower their bpm'. 'The less exercise someone does, the higher their bpm'.
	(4)	
14.(a)(i) 0.55 oe	B1	
14.(a)(ii) 0.35 × 740 = 259	M1 A1	Or equivalent complete and correct method.
14.(a)(iii) 1 - (0.2 + 0.35 + 0.3) oe ÷ 3 = 0.05 oe	M1 m1 A1	FT 1 – ('their 0.55' + 0.3) Answer may be seen in the table Answers in the working space take precedence over the table. Note: If answers of 0.1 and 0.05 are offered without labels (or incorrectly labelled) or not given in the table then award M1 m1 A0.
14.(b)(i) 62	B1	Venn diagram takes precedence
14.(b)(ii) 31 104 oe ISW	B2	B1 for $\frac{17+14}{104}$ or $\frac{31}{b}$, where b > 31 or $\frac{17+14}{b}$, where b > 31
	(9)	

15. $(52-35.2) \div 3$ $= 5.6$ (cm) (85.6 - 35.2) $\div 5.6$ or 35.2 + 9 × 5.6 oe M1 FT 'their (52 - 35.2) $\div 3$ ' Note: If a candidate is awarded M1 A0 and attempts repeated additions with their incorrect 5.6 , there needs to be enough additions. 10 (boxes) A2 Not from incorrect working A1 for 9 (boxes) If no marks, from a method starting with $(52-35.2) \div 4.2$ SC1 for 8 boxes from $(85.6-52) \div 4.2 + 4$ or $(85.6-35.2) \div 3$ $= 5.6$ (cm) A1 FT 'their $(52-35.2) \div 3$ $= 5.6$ (cm) M3 May be seen in stages M4 FT 'their $(52-35.2) \div 3$ ' M41 A2 SC2 for 12 boxes from $(85.6-52) \div 4.2 + 4$ or $(85.6-52) \div 4.2$ SC1 for 8 boxes from $(85.6-52) \div 4.2 + 4$ or $(85.6-52) \div 5.6$ or M5 FT 'their $(52-35.2) \div 3$ ' M6 FT 'their $(52-35.2) \div 3$ ' Note: If a candidate is awarded M1 A0 and attempts repeated additions with their incorrect $(5.6) \div (5.6) \div$
$ \begin{array}{c} 35.2 + 9 \times 5.6 \text{ oe} \\ \hline \\ & & \\ \hline \\ $
attempts repeated additions with their incorrect 5.6, there needs to be enough additions to get a value just below or just above 85.6. They may use a mixture of + 'their 5.6' (1box) and + 'their 16.8' (3boxes) within their additions. 10 (boxes) A2 Not from incorrect working A1 for 9 (boxes) If no marks, from a method starting with $(52-35.2) \div 4 = 4.2$ award SC2 for 12 boxes from $(85.6-52) \div 4.2 + 4$ or $(85.6-35.2) \div 4.2$ SC1 for 8 boxes from $(85.6-52) \div 4.2$ Alternative method 1 $(52-35.2) \div 3$ $= 5.6$ (cm) (85.6-52) $\div 5.6$ or $= 5.6 + 5.6 + 5.6 + 5.6 + 5.6$ oe or Note: If a candidate is awarded M1 A0 and attempts repeated additions with their incorrect 5.6, there needs to be enough additions to get a value just below or just above 85.6. They may use a mixture of + 'their 5.6' (1box) and
A1 for 9 (boxes) If no marks, from a method starting with $(52-35.2) \div 4 = 4.2$ award SC2 for 12 boxes from $(85.6-52) \div 4.2 + 4$ or $(85.6-35.2) \div 4.2$ SC1 for 8 boxes from $(85.6-52) \div 4.2$ Alternative method 1 $(52-35.2) \div 3$ $= 5.6$ (cm) M1 A1 FT 'their $(52-35.2) \div 3$ ' $(85.6-52) \div 5.6$ or $(85.6-52) \div 5.6 + 5.6 + 5.6 + 5.6 \to 5.6$ oe or Note: If a candidate is awarded M1 A0 and attempts repeated additions with their incorrect 5.6, there needs to be enough additions to get a value just below or just above 85.6. They may use a mixture of $+$ 'their 5.6' (1box) and
$(52-35.2) \div 4 = 4.2 \text{ award}$ $SC2 \text{ for } 12 \text{ boxes from } (85.6-52) \div 4.2 + 4$ $\text{or } (85.6-35.2) \div 4.2$ $SC1 \text{ for } 8 \text{ boxes from } (85.6-52) \div 4.2$ $SC1 \text{ for } 8 \text{ boxes from } (85.6-52) \div 4.2$ $(85.6-52) \div 3$ $= 5.6 \text{ (cm)}$ $(85.6-52) \div 5.6 \text{ or}$ $M1$ $FT \text{ 'their } (52-35.2) \div 3'$ $\frac{Note:}{52+5.6+5.6+5.6+5.6+5.6} = 0 \text{ or}$ $\frac{Note:}{5.6} If a candidate is awarded M1 A0 and attempts repeated additions with their incorrect 5.6, there needs to be enough additions to get a value just below or just above 85.6. They may use a mixture of + 'their 5.6' (1box) and$
or $(85.6-35.2) \div 4.2$ SC1 for 8 boxes from $(85.6-52) \div 4.2$ Alternative method 1 $(52-35.2) \div 3$ $= 5.6 \text{ (cm)}$ M1 $(85.6-52) \div 5.6$ or $(85.6-52) \div 5.6 + 5.6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M1 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M1 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M1 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M1 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M1 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M1 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M1 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M1 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M1 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M2 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M3 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M1 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M2 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M2 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M3 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M2 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M3 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M4 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M2 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M3 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M4 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M3 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M4 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M2 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M3 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M4 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M3 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M4 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M3 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M4 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M3 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M4 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M4 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M4 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M5 $(85.6-52) \div 6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ M4 $(85.6-52) \div 6 + 5.6 + 5.6 \text{ oe or}$ M5 $(85.6-52) \div 6 + 5.6 + 5.6 \text{ oe or}$ M6 $(85.6-52) \div 6 + 5.6 + 5.6 \text{ oe or}$ M6 $(85.6-52) \div 6 + 5.6 + 5.6 $
Alternative method 1 $(52-35.2) \div 3$ $M1$ $= 5.6 \text{ (cm)}$ $M1$ $(85.6-52) \div 5.6$ or $M1$ FT 'their $(52-35.2) \div 3$ ' $M1$ $S2+5.6+5.6+5.6+5.6+5.6$ or $S2+5.6+5.6+5.6+5.6+5.6$ or $S3+5.6+5.6+5.6+5.6$ or $S3+5.6+5.6+5.6+5.6$ or $S3+5.6+5.6+5.6+5.6$ or $S3+5.6+5.6+5.6+5.6$ or $S3+5.6+5.6+5.6+5.6$ or $S3+5.6+5.6+5.6$ or $S3+5.6+5.6$ or $S3+5.6$ or $S3+5.6$ or $S3+5.6$ or $S3+5.6$ or $S3+5.6$ or $S3+5.6$
$(52-35.2) \div 3$ $= 5.6 \text{ (cm)}$ $(85.6-52) \div 5.6 \text{ or}$ $52 + 5.6 + 5.6 + 5.6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ $\frac{Note:}{5.6, \text{ there needs to be enough additions to get a value just below or just above } 85.6. \text{ They may use a mixture of } + \text{ 'their } 5.6' \text{ (1box) and}$
$= 5.6 \text{ (cm)}$ $(85.6 - 52) \div 5.6 \text{or}$ $52 + 5.6 + 5.6 + 5.6 + 5.6 + 5.6 + 5.6 \text{ oe or}$ $\frac{\text{Note:}}{\text{If a candidate is awarded M1 A0 and attempts repeated additions with their incorrect 5.6, there needs to be enough additions to get a value just below or just above 85.6. They may use a mixture of + 'their 5.6' (1box) and}$
(85.6 – 52) ÷ 5.6 or m1 FT 'their (52 – 35.2) ÷ 3' 52 + 5.6 + 5.6 + 5.6 + 5.6 + 5.6 oe or Note: If a candidate is awarded M1 A0 and attempts repeated additions with their incorrect 5.6, there needs to be enough additions to get a value just below or just above 85.6. They may use a mixture of + 'their 5.6' (1box) and
52 + 5.6 + 5.6 + 5.6 + 5.6 + 5.6 oe or Note: If a candidate is awarded M1 A0 and attempts repeated additions with their incorrect 5.6, there needs to be enough additions to get a value just below or just above 85.6. They may use a mixture of + 'their 5.6' (1box) and
attempts repeated additions with their incorrect 5.6, there needs to be enough additions to get a value just below or just above 85.6. They may use a mixture of + 'their 5.6' (1box) and
10 (boxes) A2 Not from incorrect working A1 for 6 (boxes)
Alternative method 2
52 – 35.2 = 16.8 with an attempt at repeated additions to get to 85.6. At least 1 addition must be attempted. e.g.
35.2 + 16.8 + or 52 + 16.8 +
Note: If the answer to 52 – 35.2 is incorrect and they have attempted repeated additions with
35.2 + 16.8 + 16.8 (= 85.6) or m1 their incorrect 16.8 onto either 35.2 or 52. Marks can only be awarded if there are enough
(85.6 – 35.2) ÷ 16.8 additions to get to a value just below or just above 85.6. In this case award M1 m1.
OR
Note: (85.6 – 35.2) ÷ 16.8 or (85.6 – 52) ÷ 16.8 implies M2. If the answer to 52 – 35.2 is incorrect but the correct divisions are shown wi
(85.6 – 52) ÷ 16.8 their incorrect 16.8 then award M1 m1.
10 (boxes) A2 Not from incorrect working A1 for 1 + 3 + 3 + 3 or 4 + 3 + 3
or 9 boxes or 6 boxes (as appropriate for their method)

16. h-k = 2g or $2g = h-k$ or $-2g = -h+k\frac{h-k}{2} = g or g = \frac{h-k}{2} or g = \frac{-h+k}{-2}$	B1 B1	F.T. only from $2g = \pm h \pm k$, stated or implied. Mark final answer. Note Allow B1B0 for $g = (h - k) \div 2$ or $g = (-h + k) \div -2$ with or without brackets. Allow B1B0 for $h - k$ or $h - k$ ('g' missing)
	(2)	
17.(a) Correct translation i.e. 3 squares to the right and 4 down	B2	B1 for a correct horizontal or vertical translation
Vertices (4, -3) (0, -2) (1, -4)		
17.(b) Correct rotation	B2	B1 for a 90° anticlockwise rotation about (0,0)
Vertices (1, 3) (1, 4) (4, 4) (4, 2) (3, 2) (3, 3)		
	(4)	
18.*(a)	\ /	
1 ' '		
$\frac{675}{45 \times 60}$ oe	M1	
0.25 (N/cm²)	A1	
18.*(b)		
$0.75 \times (45 \times 60)$ or 675×3	M1	FT 'their 2700' from (a) if necessary
2025 (N)	A1	
	(4)	

10 *()()	1	
19.*(a)(i)	D4	
2014 and 2016	B1	
19.(a)(ii)	E1	Allow one of the following:
No and valid explanation		Allow one of the following:
e.g. one of the following:		'There is no point on 2009'
'There is no data for 2009'		'We can't tell the % exactly between the even
'The data is only for even-numbered years.'		years'
'The lines joining the points on a time-series		'It could be higher or lower between the plotted
graph have no value.'		points'
'The graph shows 'households' and Jane		
mentions 'people''.		
19.(b)(i)	D4	Ohard a sala fastalassassa
All points correctly plotted	P1	Check overlay for tolerance
		Allow if plots are correct but incorrectly joined.
19.(b)(ii)		
2018	B1	FT 'their plotted points' providing at least 5 points
		correctly plotted and a unique solution
19.(b)(iii)		
Comment that includes words indicating	E1	A comment does not need to mention the years
internet keeps on increasing whereas		but must imply computer ownership and internet
desktop ownership decreases (after 2014)		connection.
		Allow 'the county will follow a similar trend to
		Eduvale'
	(5)	
20.*(a)		
$8.2^2 - \pi \times \left(\frac{8.2}{2}\right)^2$ oe	MO	MO for eight of (over of circle)
$8.2^{2} - \pi \times \left(\frac{\pi}{2}\right)$ de	М3	M2 for sight of (area of circle =)
\ _ /		$(82)^2$.
		$\pi \times \left(\frac{8.2}{2}\right)^2 (=52.81)$ oe
		or
		M1 for sight of (area of square =) 8.2 ² (= 67.24)
		AND for (radius of circle =) 4.1 (look on diagram)
		May be embedded in an incorrect calculation
		.,
14.4 or 14.42 to 14.46 (cm ²)	A1	Accept 14 only if from correct working
20.(b)	_	
$7 \times 9.8 \times 16$	M2	M1 for 7×9.8 (=68.6)
1097·6 or 1098 (cm ³)	A1	
	(7)	

21.*(a) 5x = 8	B1	
$x = 1.6 \text{ or } \frac{8}{5} \text{ ISW}$	B1	FT from $ax = 8$, $a \ne 1$ or $5x = b$
3		Accept $\frac{8}{a}$ or $\frac{b}{5}$ but if on FT either simplifies to an integer the answer must be given as an integer.
		x = can be omitted but must not be wrong if there.
		Correct answer implies first B1.
21.(b) (number of apples =) $x + 2$ si	B1	Not implied by use of numerical trials. Note: Do not award B1 for x + 2 = 545 oe.
30x + 25(x+2) = 545 oe	M1	FT 'their $x + 2$ ' providing binomial in x ; brackets may be omitted
55x + 50 = 545 oe $x = 9$	m1 A1	Expands the brackets and simplifies CAO (no FT as needs to be an integer answer)
		If M0 A0 award either: SC2 for an answer of 9 if unsupported or from trials. SC1 if 9 only seen in embedded working.
21.(c) $(x + 1)(x + 4)$	B2	B1 for a pair of brackets that expand to give
		$x^{2} + 5x \pm a$ OR $x^{2} \pm bx + 4$
	(8)	
22*.		Degree symbol may be omitted throughout; lengths may be in metres throughout
Use of right-angled triangle with trigonometry with 3° or 87° correctly indicated with 2.5 used as a side	S1	Angle may be marked on diagram; trig ratio used may not be correct at this stage
(vertical height =) $2.5 \tan 3^{\circ}$ or $\frac{2.5}{\tan 87^{\circ}}$	M2	M1 for $\tan 3^\circ = \frac{?}{2.5}$ or $\tan 87^\circ = \frac{2.5}{?}$
0.1(3) (km)	A1	Not from wrong working e.g. 2.5sin(3)
		If units are stated, they must be correct but ISW any attempt at a unit change after a correct answer has been seen
		Unsupported 0.1(3) is awarded S1 only
Alternative method Use of right-angled triangle with trigonometry with 3° or 87° correctly indicated with 2.5 used as a side	S1	Angle may be marked on diagram; trig ratio used may not be correct at this stage
(vertical height =) $\frac{2.5 \times \sin 3}{\sin 87}$	M2	$M1 for \frac{2.5}{\sin 87} = \frac{x}{\sin 3} oe$
0.1(3) (km)	A1	Unsupported 0.1(3) is awarded S1 only
	(4)	

23*(a) 3000 × 1.04 ⁵	M1	Or equivalent full and complete method
= (£)3649.95(87) or (£)3649.96 or (£)3650	A1	
$\frac{3649.96-3000}{3000}$ (× 100) oe AND $\frac{3\times190}{3000}$ (× 100) oe	M2	FT 'their 3649.96' provided M1 previously awarded
OR		
$\frac{3649.96-3\times190}{3000} (x \ 100)$		M1 for either $\frac{3649.96-3000}{3000}$ (× 100)
		or $\frac{3\times190}{3000}$ (× 100) providing M1 previously awarded
A indicated AND 2.7(%) or 2.66(%)	A1	FT. Allow 2(%) or 2.6(%) or 3(%).
Valid assumption e.g. 'Account A interest rate stays the same' 'Account A interest rate does not vary' 'Account A interest rate does not go up or down'	E1	Do not allow 'Account A, interest rate can vary' 'Account A interest rate is not guaranteed'
Alternative method	140	10100 100
1.04 ⁵ × 100 – 100 oe	M2	= 1.2166 × 100 – 100
		M1 for 1.04 ⁵
21.7(%) or 21.66(%)	A1	Allow 21(%) or 21.6(%) or 22(%)
(3 × 190) ÷ 3000 (× 100) (=19%)	M1	FT providing M1 previously awarded
A indicated AND 2.7(%) or 2.66(%)	A1	FT providing M1 M1 previously awarded
		Allow 2(%) or 2.6(%) or 3(%)
Valid assumption e.g. 'Account A interest rate stays the same' 'Account A interest rate does not vary' 'Account A interest rate does not go up or down'	E1	Do not allow 'Account A - interest rate can vary' 'Account A interest rate is not guaranteed'
23.(b) Valid impact based on assumption e.g.	E1	If no valid assumption is made then this mark cannot be awarded. E0E1 not allowed.
'Even if the interest rate went up, the answer would still be account A but the difference would be more.'		Allow 'the answer <u>could</u> be different'.
'If the interest rate went down, account A may not have the greater increase.'		Do not allow 'the answer could be wrong'.
'If the interest rate doesn't stay the same, then Account A could have even more money than B or less than B'		
	(7)	