# Mark Scheme (Results) 

January 2023

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 2H

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023
Question Paper Log Number P72443A
Publications Code 4MA1_2H_MS_2023
All the material in this publication is copyright
© Pearson Education Ltd 2023

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of $M$ marks)


## - Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission


## - No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.
If there is no answer on the answer line then check the working for an obvious answer.

## - Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

## International GCSE Maths

Apart from questions where the mark scheme states otherwise, the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\frac{26}{7}, \frac{13}{8} \text { oe }$ |  | 3 | M1 both fractions expressed as improper fractions, no need for $\div$ or $\times$ may be equivalent to those given eg $\frac{52}{14}, \frac{26}{16}$ etc. A student could invert $\frac{13}{8}$ and show multiplication - as shown in the 2nd M1, this mark is then implied. |
|  | $\frac{26}{7} \times \frac{8}{13} \text { oe or eg } \frac{208}{56} \div \frac{91}{56}$ |  |  | M1 or for both fractions expressed as equivalent fractions with denominators that are a common multiple of 7 and 8 eg $\frac{208}{56} \div \frac{91}{56}$ |
|  | eg $\frac{26}{7} \times \frac{8}{13}=\frac{208}{91}=\frac{16}{7}=2 \frac{2}{7}$ <br> or $\frac{26}{7} \times \frac{8}{13}=\frac{208}{91}=2 \frac{26}{91}=2 \frac{2}{7}$ <br> or $\quad \frac{26^{2}}{7} \times \frac{8}{13^{1}}=\frac{16}{7}=2 \frac{2}{7}$ <br> or $\frac{208}{56} \div \frac{91}{56}=\frac{208}{91}=\frac{16}{7}=2 \frac{2}{7}$ <br> or correct working to $\frac{16}{7}$ and writing <br> $2 \frac{2}{7}=\frac{16}{7}$ (usually on the first line of working) working required | shown |  | A1 dep on M2 <br> NB: use of decimals scores no marks (unless used as a check) |
|  |  |  |  | Total 3 marks |




| Question | Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4}$ | eg $5 x-1=3 x+7.4$ oe <br> or <br> eg $10 x-2+48$ or $6 x+14.8+48$ or $24+24+5 x-1+3 x+7.4$ oe | M1 a correct equation to find $x$ <br> or <br> a correct expression for the perimeter <br> in terms of $x$ |  |  |
|  | $x=4.2$ |  | A1 the correct value of $x$ <br> (implies previous mark) |  |
|  | $2 \times 24+2(5 \times$ " 4.2 " -1$)$ oe or $2 \times 24+2(3 \times$ " 4.2 " +7.4$)$ oe <br> or <br> $2 \times 24+(5 \times 4.2-1)+(3 \times 4.2+7.4)$ oe eg $24+24+20+20$ oe | M1dep on a correct method to find the <br> perimeter - use of positive $x$ from <br> correct working (1st M1 awarded for <br> an equation) and only if used the <br> same measurement for $A D$ and $B C$ |  |  |
|  | working required | 88 |  | A1 cao dep on either M1 or $x=4.2$ |


| Question | Working | Answer | Mark | Notes |
| :---: | :--- | :---: | :---: | :---: |
| $\mathbf{5}$ (a) |  | 2.745 | 1 | B1 |
| (b) |  | 2.755 | 1 | B1 allow 2.7549 |
| (c) | $(80 \times 60) \div 2^{2}$ | 1200 | 2 | M1 For two of 80, 60, 2 or 4 rather than 2 ${ }^{2}$ oe |
|  | eg $(80 \times 60) \div 2^{2}=1200$ oe <br> working with rounded values seen required |  | A1 <br> dep on M1 for answer coming from use of the <br> 3 rounded numbers - if 1200 seen then ignore <br> any other working and comments |  |
|  |  |  |  | Total 4 marks |


| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 6 | $[k=] \frac{6+17}{2}$ or $[k=] 6+\frac{17-6}{2}$ oe or $[j=] 4+2(15-4)$ or $[j=] 15+(15-4)$ or $\frac{4+j}{2}=15$ oe |  | 3 | M1 |
|  | Correct answers score full marks (unless from obvious incorrect working) <br> 1 correct answer will score M1A1 and both will score M1A1A1 | 26 |  | A1 |
|  |  | 11.5 |  | A1 oe eg $\frac{23}{2}$ |
|  |  |  |  | both answers the wrong way round scores M1A1 unless the correct answers are clearly labelled in working space |
|  |  |  |  | Total 3 marks |


| Question | Working |  | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | $\begin{gathered} \text { eg } 5 x+4 y=-2 \\ +8 x-4 y=17.6 \\ (13 x=15.6) \\ \text { eg } \\ {\left[x=\frac{4.4+y}{2}\right] \mathrm{oe}} \\ 5\left(\frac{4.4+y}{2}\right)+4 y=-2 \mathrm{oe} \end{gathered}$ |  |  | 3 | M1 multiplication of one or both equation(s) with correct operation selected (allow one arithmetic error) (if + or - is not shown then assume it is the operation that at least 2 of the 3 terms have been calculated for) or correct rearrangement of one equation with substitution into second |
|  | $\begin{aligned} & \text { eg } 5 \times " 1.2 "+4 y=-2 \text { or } \\ & 2 \times " 1.2 "-y=4.4 \end{aligned}$ | $\begin{aligned} & \text { eg } 5 x+2 \times "-2 "=4.4 \text { or } \\ & 2 x-"-2 "=4.4 \end{aligned}$ |  |  | M1 (dep on previous M1 but not on a correct first value) correct method to find second unknown - this could be a correct substitution into one of the equations given or calculated or starting again with the same style of working as for the first method mark |
|  | Working required |  | $\begin{aligned} & x=1.2 \\ & y=-2 \end{aligned}$ |  | A1 oe eg $x=\frac{6}{5}$ for both solutions dependent on first M1 |
|  |  |  |  |  | Total 3 marks |


| Question | Working | Answer | Mark | Notes |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{8}$ | $\frac{2.9}{100} \times 5000(=145)$ oe or $1.029 \times 5000(=5145)$ oe or |  |  |  |
| $1.029^{2} \times 5000(=5294 \ldots .$.$) oe or 0.058 \times 5000(=290)$ oe |  |  |  |  |
| or $1.058 \times 5000(=5290)$ |  |  |  |  |$)$


| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 9 (a) |  | 1 | 1 | B1 |
| (b) |  | $27 a^{6} b^{12}$ | 2 | B2 (B1 for 2 of 3 parts in a product) |
| (c) |  | $7 x^{2} y^{2}\left(2 y^{2}+3 x\right)$ | 2 | B2 B1 for a correct factorisation with at least 2 factors outside (eg $7 x, x^{2}, x y$, etc) eg $7 x\left(2 x y^{4}+3 x^{2} y^{2}\right)$ eg $x^{2} y^{2}\left(14 y^{2}+21 x\right)$ or for the correct common factor with just one mistake inside the bracket eg $7 x^{2} y^{2}(2 y+3 x)$ which is missing the squared on the $y$ term |
| (d) | $y=m x+4 \text { where } m \neq 0 \text { oe }$ <br> (eg $y=2 x+4$ ) <br> or $y=-2 x+c \text { or } y+2 x=c \text { oe }$ <br> or $-2 x+4 \text { or } \mathrm{f}(x)=-2 x+4 \text { oe }$ |  | 2 | M1 |
|  | Correct answer scores full marks (unless from obvious incorrect working) | $y=-2 x+4$ |  | A1 oe eg $y+2 x=4$ |
|  |  |  |  | Total 7 marks |


| Question | Working | Answer | Mark | Notes |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | $(54-24) \div 2(=15)$ [may be marked on diagram] |  | 5 | M1 |  |
|  | " $15^{\prime \prime 2}-(24 \div 2)^{2}(=81)$ |  |  | M1 ft their " 15 " (if > 12) |  |
|  | [height $=] \sqrt{115^{\prime \prime}-(24 \div 2)^{2}}(=9)$ |  |  | M1 ft their "15" (if > 12) |  |
|  | ( $24 \times$ "9") $\div 2$ oe |  |  | figures must be from correct working |  |
|  | Correct answer scores full marks (unless from obvious incorrect working) | 108 |  | A1 allow 107.9-108.1 |  |
|  | ALTERNATIVES BELOW |  |  |  | Total 5 marks |
| 10 | $(54-24) \div 2(=15)$ [may be marked on diagram] |  | 5 | M1 |  |
|  | or $x=\cos ^{-1}\left(\frac{" 12 "}{" 15 "}\right)(=36.86 \ldots)$ <br> or $y=\sin ^{-1}\left(\frac{24 \div 2}{" 15 "}\right)(=53.13 \ldots)$ <br> or $A=\cos ^{-1}\left(\frac{15^{2}+15^{2}-24^{2}}{2 \times 15 \times 15}\right)(=106.2 \ldots)$ <br> or $B=\cos ^{-1}\left(\frac{15^{2}+24^{2}-15^{2}}{2 \times 15 \times 24}\right)(=36.8 \ldots$. |  |  | $\begin{aligned} & \text { [ using Hero's formula S }=0.5 \times 54(=27) \text { and ] } \\ & 27 \times(27-24) \times(27-" 15 ") \times(27-\text { " } 15 \text { " }) \end{aligned}$ |  |
|  | $\begin{aligned} & \text { or "12"tan" } 36.86 \ldots "(=9) \quad \text { (allow } 8.9 \ldots \text { for these }) \\ & " 12 " \div \tan " 53.13 \ldots . . "(=9) \\ & \text { or " } 15 " \times \sin " 36.86 \ldots "(=9) \\ & \text { or " } 15 " \times \cos " 53.13 \ldots "(=9) \end{aligned}$ |  |  | M1 ft <br>  their <br>  "15" <br>  (if $>$ <br>  12) | M2 for$0.5 \times 24 \times$ " 15 " $\times \sin " 36.86 \ldots$.." or$0.5 \times$ " $15 " \times$ " 15 " $\times \sin (2 \times$ " $53.13 \ldots$...) or$0.5 \times 15 " \times " 15 " \times \sin (" 106.2 \ldots$...) or$\sqrt{" 27 "(" 27 "-24)(" 27 "-" 15 ")(" 27 "-" 15 ")}$ |
|  | (24×"9") $\div 2$ oe |  |  | M1 |  |
|  | Correct answer scores full marks (unless from obvious incorrect working) | 108 |  | A1 allow 107.9-108.1 |  |
|  |  |  |  |  | Total 5 marks |


| Question | Working | Answer | Mark | Notes |
| :---: | :--- | :---: | :---: | :--- |
| $\mathbf{1 1}$ |  | B | 3 | B1 |
|  |  | A |  | B1 |
|  |  | F |  | B1 |
|  |  |  |  |  |


| Question | Working |  | Answer | Mark |  | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 (a) |  |  | 43.5-44.5 | 1 | B1 | $\pm 0.5$ small square |
| (b) | eg reading of 48-49 |  |  | 2 | M1 | For correct method to start the question eg a vertical line from 55 up to the line and a horizontal line from the correct point on the curve or a mark on the curve at the correct point and a mark on the vertical axis at the correct point or a correct reading of 48 to 49 |
|  | Correct answer scores full marks (unless from obvious incorrect working) |  | 11 or 12 |  | A1 | Allow an answer of 11 or 12 (ie must be whole number) |
| (c) | Time taken to shop in the market ( $m$ minutes) | Frequency |  | 2 |  | All values correctly filled in (NB: first 2 are already completed) <br> (B1 for 3 or 4 correct values from $7,10,15,15,5$ ) |
|  | $0<m \leq 10$ | 3 |  |  |  |  |
|  | $10<m \leq 20$ | 5 |  |  |  |  |
|  | $20<m \leq 30$ | 7 |  |  |  |  |
|  | $30<m \leq 40$ | 10 |  |  |  |  |
|  | $40<m \leq 50$ | 15 |  |  |  |  |
|  | $50<m \leq 60$ | 15 |  |  |  |  |
|  | $60<m \leq 70$ | 5 |  |  |  |  |
|  |  |  |  |  |  | Total 5 marks |


| Question | Working | Answer | Mark | Notes |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | eg $20 \times \frac{x+3}{4}-20 \times \frac{7-x}{5}=20 \times 4.3$ or <br> eg $5(x+3)-4(7-x)=20 \times 4.3$ or <br> eg $\frac{5(x+3)}{20}-\frac{4(7-x)}{20}(=4.3)$ or <br> eg $\frac{5(x+3)-4(7-x)}{20}(=4.3)$ |  | 3 |  | For clear intention to multiply all terms by 20 (or $4 \times 5$ ) or a multiple of 20 oe or <br> to express LHS as two fractions over 20 (or $4 \times 5$ ) or a multiple of 20 oe or as a single fraction with a denominator of 20 (or $4 \times 5$ ) or a multiple of 20 oe <br> if expanded numerator, allow one error |
|  | $\begin{aligned} & \text { eg } 5 x+15-28+4 x=4.3 \times 20 \text { oe } \\ & \text { eg } 9 x-13=86 \\ & \text { eg } 9 x=99 \end{aligned}$ |  |  | M1 | Expanding brackets and multiplying by denominator with no more than one error in total from multiplying out brackets [we must see $4.3 \times 20$ or 86 accurately] |
|  | Working required | 11 |  | A1 | dep on M1 |
|  |  |  |  |  | Total 3 marks |


| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 14 (a)(i) |  | 140 | 1 | B1 |
| (a)(ii) |  | opposite angles of a cyclic quadrilateral (add to $180^{\circ}$ ) oe | 1 | B1 dep on B1 in (a)(i) or seeing $180-40$ with no contradiction oe eg angle at centre is double $(2 \times)$ angle at circumference oe AND angles around a point (or point 360) |
| (b) | $\begin{aligned} & A D B=66 \text { or } \\ & A B O=90-66(=24) \text { or } \\ & B A O=90-66(=24) \text { or } \\ & O D B=\frac{180-80}{2}(=50) \text { or } \\ & D O B \text { reflex }=280 \end{aligned}$ |  | 3 | M1 Clearly labelled in working or shown on diagram |
|  | For 2 of: $\begin{aligned} & A D B=66 \text { or } \\ & A B O=90-66(=24) \text { or } \\ & B A O=90-66(=24) \text { or } \\ & O D B=\frac{180-80}{2}(=50) \\ & D O B \text { reflex }=280 \end{aligned}$ |  |  | M1 (award M2 for 360-(280+40+24) oe |
|  | Correct answer scores full marks (unless from obvious incorrect working) | 16 |  | A1 |
|  |  |  |  | Total 5 marks |



| Question | Working | Answer | Mark | Notes |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | $\begin{aligned} \text { eg } 1000 x & =438.38 \ldots \\ 10 x & =4.38 \ldots \\ \text { or } 100 x & =43.838 \ldots \\ x & =0.438 \ldots \end{aligned}$ <br> oe |  | 2 |  | For selecting 2 correct recurring decimals that when subtracted give a whole number or terminating decimal ( 43.4 or 434 etc) eg $1000 x=438.38 \ldots$ and $10 x=4.38 \ldots$ or $100 x=43.838 \ldots$ and $x=0.438 \ldots$ with intention to subtract. (if recurring dots not shown then showing at least one of the numbers to at least 5 sf ) or <br> $0.4+0.038$ and eg $1000 x=38.38 \ldots$ \& $10 x=0.3838 \ldots$, with intention to subtract. |
|  | $\begin{aligned} & \text { eg } 1000 x-10 x=438.38 \ldots-4.38 \ldots=434 \text { and } \\ & \frac{434}{990}=\frac{217}{495} \\ & \text { or } \\ & \text { eg } 100 x-x=43.838 \ldots-0.438 \ldots=43.4 \text { and } \\ & \frac{43.4}{99}=\frac{217}{495} \end{aligned}$ <br> or eg $1000 x-10 x=38.38 \ldots-0.3838=38$ and $0.4+\frac{38}{990}=\frac{4 \times 99+38}{990}=\frac{434}{990}=\frac{217}{495}$ oe working required | Clearly shown |  |  | For completion to $\frac{217}{495}$ dep on M1 and use of some algebra |
|  |  |  |  |  | Total 2 marks |


| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 17 (a) |  | 12 | 1 | B1 |
| (b) | $\frac{5-\sqrt{18}}{1-\sqrt{2}} \times \frac{1+\sqrt{2}}{1+\sqrt{2}} \text { or } \frac{5-\sqrt{18}}{1-\sqrt{2}} \times \frac{-1-\sqrt{2}}{-1-\sqrt{2}} \text { oe }$ |  | 3 | M1 Multiplying numerator and denominator by $1+\sqrt{2}$ |
|  | $\begin{aligned} & \frac{5-\sqrt{36}+5 \sqrt{2}-\sqrt{18}}{1+\sqrt{2}-\sqrt{2}-2} \text { or } \frac{5-6-3 \sqrt{2}+5 \sqrt{2}}{-1} \text { or } \\ & \frac{-5+6+3 \sqrt{2}-5 \sqrt{2}}{1} \text { oe } \end{aligned}$ <br> NB:allow $\sqrt{18}$ or $3 \sqrt{2} \sqrt{36}$ or 6 or $\sqrt{6} \sqrt{6}$ |  |  | M1 Showing correct expansions (not necessarily as a fraction) |
|  | working required | $1-2 \sqrt{2}$ |  | A1 dep on M2 (ie all stages of working must be shown convincingly) or for stating $a=1$ and $b=-2$ |
|  |  |  |  | Total 4 marks |


| Question | Working | Answer | Mark |  | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | USE OVERLAY PROVIDED |  |  |  |  |
| 18 (a) | FD are: $6,7,5,4,1.8$ |  | 3 |  | For at least two frequency densities correct or at least two correct bars |
|  |  |  |  |  | For at least 4 correct frequency densities or 4 correct bars |
|  | A fully correct histogram gains full marks | Correct histogram |  | $\overline{\mathrm{A} 1}$ | Fully correct histogram <br> SCB2 for all five bars of correct width with heights in the correct ratio (eg drawn at 0.6, 0.7, 0.5, 0.4, 0.18) <br> SCB1 for three bars of correct width with heights in the correct ratio |
| (b) | $\begin{aligned} & \left(9+\frac{2}{3} \times 12\right)(=17) \text { oe eg } 9+8(=17) \text { or } \\ & 55-\left(12+7+15+\frac{1}{3} \times 12\right) \end{aligned}$ |  | 2 |  | may be seen as numerator of fraction (ft their graph dep on M1 in (a)) |
|  | Correct answer scores full marks (unless from obvious incorrect working) | $\frac{17}{55}$ |  | A1cao | Or 0.30909...or 30.909...\% (to at least 2 sf) SCB1 for $\frac{38}{55}(0.6909 \ldots)$ |
|  |  |  |  |  | Total 5 marks |


| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 19 | $\begin{aligned} & \text { eg } \sqrt{\frac{25}{64}}\left(=\frac{5}{8}=0.625\right) \text { or } \sqrt{\frac{64}{25}}\left(=\frac{8}{5}=1.6\right) \text { or } \\ & \sqrt{25}: \sqrt{64}(5: 8) \text { or } \sqrt{64}: \sqrt{25}(8: 5) \text { or } \\ & \frac{(\sqrt{25})^{3}}{(\sqrt{64})^{3}}=\left(\frac{125}{512}=0.244140625\right) \text { oe or } \frac{512}{125}=4.096 \\ & \frac{25^{3}}{64^{3}}=\frac{(\operatorname{volof} \mathbf{B})^{2}}{(\operatorname{volof} \mathbf{B}+541.8)^{2}} \text { or } \frac{25}{64}=\frac{(\operatorname{volof} \mathbf{B})^{\frac{2}{3}}}{(\operatorname{volof} \mathbf{B}+541.8)^{\frac{2}{3}}} \text { oe } \end{aligned}$ |  | 4 | M1 for a correct scale factor for length - may be given as a fraction or decimal or ratio or <br> a correct scale factor for volume given as a fraction or decimal or ratio or a correct equation for the volume of vase $\mathbf{B}$ |
|  | $\begin{aligned} & \text { eg } \mathbf{B}\left(\frac{512}{125}-1\right)=541.8 \text { or } 3.096 \mathbf{B}=541.8 \text { oe } \\ & \text { or eg } \mathbf{A}\left(1-\frac{125}{512}\right)=541.8 \text { or } \frac{387}{512} \mathbf{A}=541.8 \\ & \quad\left(8^{3}\right) k-\left(5^{3}\right) k(=387 k)=541.8 \\ & \text { or eg }(k=) \frac{541.8}{387}\left(=\frac{7}{5}\right) \end{aligned}$ |  |  | M1 For a correct equation for the volume of $\mathbf{B}$ or a correct equation for the volume of $\mathbf{A}$ |
|  | eg (B) $541.8 \div=\frac{387}{125} "$ or $541.8 \div " 3.096 "$ or eg $125 \times " \frac{7}{5}$ " or <br> (A) $541.8 \div " \frac{387}{512} "(=716.8) \mathrm{oe}$ |  |  | M1 For a completely correct method to find the volume of vase $\mathbf{B}$ or vase $\mathbf{A}$ |
|  | Correct answer scores full marks (unless from obvious incorrect working) | 175 |  | A1 cao |
|  |  |  |  | Total 4 marks |


| 20 | $x^{2}+(7-2 x)^{2}=34$ | $\left(\frac{7-y}{2}\right)^{2}+y^{2}=34$ |  | 5 | M1 substitution of linear equation into quadratic |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $5 x^{2}-28 x+15[=0]$ oe | $5 y^{2}-14 y-87[=0]$ oe |  |  | M1 dep on previous M1 for multiplying out and collecting terms, forming a three term quadratic in any form of $a x^{2}+b x+c(=0)$ where at least 2 coefficients ( $a$ or $b$ or $c$ ) are correct and all are non-zero |
|  | $(5 x-3)(x-5)[=0]$ <br> or $\frac{-(-28) \pm \sqrt{(-28)^{2}-4 \times 5 \times 15}}{2 \times 5}$ <br> or $5\left[\left(x-\frac{28}{10}\right)^{2}-\frac{784}{100}\right]+15=0 \mathrm{oe}$ <br> or $x=0.6 \text { and } x=5$ <br> (allow incorrect labels for $x / y$ ) | $(5 y-29)(y+3)[=0]$ <br> or $\frac{-(-14) \pm \sqrt{(-14)^{2}-4 \times 5 \times(-87)}}{2 \times 5}$ <br> or $5\left[\left(y-\frac{14}{10}\right)^{2}-\frac{196}{100}\right]-87=0$ oe or $y=5.8 \text { and } y=-3$ <br> (allow incorrect labels for $x / y$ ) |  |  | M1ft dep on M1 for solving their 3 term quadratic equation using any correct method (if factorising, allow brackets which expanded give 2 out of 3 terms correct ) (if using formula allow one sign error and some simplification allow as far as $\frac{28 \pm \sqrt{784-300}}{10}$ or $\left.\frac{14 \pm \sqrt{196+1740}}{10}\right)$ <br> (if completing the square allow as far as shown) or correct values for $x$ or correct values for $y$ dep on correct quadratic |
|  | $\begin{aligned} & \text { eg } y=7-2 \times 5 \text { and } \\ & y=7-2 \times 0.6 \end{aligned}$ <br> (correct labels for $x / y$ ) | $\begin{aligned} & \text { eg } 5.8=7-2 x \text { and } \\ & -3=7-2 x \end{aligned}$ <br> (correct labels for $x / y$ ) |  |  | M1ft dep on previous M1 for substituting their 2 found values of $x$ or $y$ in a suitable equation or correct values for the other variable |
|  | Working must be shown |  | $\begin{aligned} & x=0.6, y=5.8 \\ & x=5, y=-3 \end{aligned}$ |  | A1 dep on M1 and the correct quadratic (allow coordinates) must be paired correctly |



| Question | Working | Answer | Mark | Notes |
| :---: | :--- | :---: | :---: | :---: |
| $\mathbf{2 1}$ | $r=\sqrt{\frac{49 \pi}{4 \pi}}$ oe $(=3.5)$ | 3 | M1 |  |
|  | $[$ volume $=] \frac{4}{3} \times \pi \times " 3.5^{\prime \prime}$ |  | M1 |  |
|  | Correct answer scores full marks (unless from <br> obvious incorrect working) | 180 |  | A1 awrt 180 |
|  |  |  |  | Total 3 marks |


| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 22 | $\begin{aligned} & (6 x-5)(x+7)(=0) \text { or } \\ & \frac{-37 \pm \sqrt{37^{2}-4 \times 6 \times-35}}{2 \times 6} \\ & 6\left[\left(x+\frac{37}{12}\right)^{2}-\left(\frac{37}{12}\right)^{2}\right] \ldots \text { oe } \end{aligned}$ |  | 3 | M1 A correct method to solve the quadratic equation $6 x^{2}+37 x-35(=0)$ using any correct method (if factorising, allow brackets which expanded give 2 out of 3 terms correct ) (if using formula allow one sign error in substitution and some simplification - allow as far as $\frac{-37 \pm \sqrt{1369+840}}{12}$ or completing the square as far as shown on left |
|  | $\frac{5}{6} \text { oe and }-7$ |  |  | A1dep on M1 <br> correct critical values (allow $0.83 \ldots$ ) |
|  | Working must be seen for both accuracy marks as asked for in question | $-7 \leq x \leq \frac{5}{6}$ |  | A1 dep on M1 $\begin{aligned} & \text { oe eg }-7 \leq x \leq 0.83 \ldots, \\ & {\left[-7, \frac{5}{6}\right] \quad \text { Accept } x \leq \frac{5}{6}, x \geq-7} \end{aligned}$ |
|  |  |  |  | Total 3 marks |


| Q | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 23 | $[D N=] 8 \sin 30$ or $8 \cos 60(=4)$ oe [where $N$ is the midpoint of $E C$ ] or $[x=] 8 \cos 30 \text { or } 8 \sin 60(=4 \sqrt{3}=6.928 \ldots)$ <br> or $2 x=\sqrt{8^{2}+8^{2}-2 \times 8 \times 8 \times \cos 120}(=\sqrt{192}=8 \sqrt{3}=13.85 \ldots .)$ |  | 5 | M1 |
|  | $[D N=] 8 \sin 30 \text { or } 8 \cos 60(=4) \text { oe eg } \sqrt{8^{2}-(4 \sqrt{3})^{2}}(=4)$ <br> And 1 of $[x=] 8 \cos 30$ or $8 \sin 60(=4 \sqrt{3}=6.928 \ldots$...) oe or $\begin{aligned} & \sqrt{8^{2}-44^{\prime 2}}(=4 \sqrt{3}=6.928 \ldots) \text { or } \\ & 2 x=\sqrt{8^{2}+8^{2}-2 \times 8 \times 8 \times \cos 120}(=8 \sqrt{3}=13.85 \ldots .) \end{aligned}$ |  |  | M1 $[(J M=) 4+4 \sqrt{3}$ implies M2] |
|  | $\left.[A M=] \sqrt{12^{2}+(" 4 \sqrt{3})^{2}}\right)^{2}(=\sqrt{192}=8 \sqrt{3}=13.856 \ldots) \text { oe }$ <br> [where $M$ is the midpoint of $G H$ ] |  |  | M1 Clear intention to be $\boldsymbol{A M}$ ( $\operatorname{not} \boldsymbol{E C}$ ) |
|  | $\tan M A J=\left(\frac{4 "+44 \sqrt{3} "}{" 8 \sqrt{3} "}\right) \text { oe eg } \tan M A J=\left(\frac{10.928 \ldots}{13.856 \ldots}\right)$ <br> if student uses $\sin$ or cos, then $A J=17.647 \ldots$ to award marks this must come from a correct method or be correct |  |  | M1 |
|  | Correct answer scores full marks (unless from obvious incorrect working) | 38.3 |  | A1 Accept 38.1-38.4 <br> If no marks scored then award <br> SCB2 for $\tan M A J=\frac{4+x}{\sqrt{x^{2}+12^{2}}}$ <br> or SCB1 for $A M=\sqrt{x^{2}+12^{2}}$ |
|  |  |  |  | Total 5 m |


| $\mathbf{Q}$ | Working | Answer | Mark | Notes |
| :--- | :--- | :---: | :---: | :--- |
| $\mathbf{2 4}$ |  | 3 | 2 | B1 |
|  |  | 0.5 |  | B1 oe |
|  |  |  |  |  |


| Q | Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 5}$ | $y=3\left(x^{2}-4 x\right)+7$ or $y=3\left(x^{2}-4 x+\frac{7}{3}\right)$ or $\frac{y-7}{3}=x^{2}-4 x$ |  | 4 |  |
|  | or $y=3(x-2)^{2} \ldots .$. |  |  |  |$)$


| Q | Working | Answer | Mark | Notes |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 26 | For one of: $10^{4 n}=(5 \times 2)^{4 n} \text { or } 5^{4 n} \times 2^{4 n}$ <br> or oe $20^{2}=\left(5 \times 2^{2}\right)^{2}$ or $5^{2} \times 2^{4}$ or $5^{2} \times 2^{2} \times 2^{2}$ or cancelling $5^{2}$ on numerator with $20^{2}$ to get 16 or $2^{4}$ |  | 5 | M1 | for writing $10^{4 n}$ correctly as a product of 5 and 2 to the power $4 n$ oe or writing $20^{2}$ correctly as a product of 5 and $2^{2}$ to the power 2 oe <br> or cancelling $5^{2}$ on numerator with $20^{2}$ to get 16 or $2^{4}$ |
|  | for getting numerator to the stage (this scores M1M1) $2^{4 n} \times 2^{3 n^{2}-15 n} \times 5^{2}$ oe eg $2^{3 n^{2}-11 n} \times 5^{-4 n+4 n+2}$ oe <br> or for two of $10^{4 n}=(5 \times 2)^{4 n}$ or $5^{4 n} \times 2^{4 n}$ <br> or <br> oe <br> $20^{2}=\left(5 \times 2^{2}\right)^{2}$ or $5^{2} \times 2^{4}$ or $5^{2} \times 2^{2} \times 2^{2}$ <br> or <br> cancelling $5^{2}$ on numerator with $20^{2}$ to get 16 or $2^{4}$ or getting the numerator to the stage |  |  | M1 |  |
|  | $\frac{2^{4 n} \times 2^{3 n^{2}} \times 2^{-15 n}}{2^{4}}\left[=1 \text { or } 2^{0}\right] \text { or } 2^{4 n} \times 2^{3 n^{2}} \times 2^{-15 n}=2^{4} \text { oe }$ |  |  | M1 | For writing the equation in powers of 2 only |
|  | $3 n^{2}-11 n-4[=0]$ |  |  | A1 | Correct quadratic equation dep on M1 |
|  | working required | $-\frac{1}{3}, 4$ |  | A1 | Both answers required dep on M1 |
|  |  |  |  |  | Total 5 marks |

