$A Q A L$

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

GCSE

Foundation Tier Paper 2

Tuesday 13 June 2023
Morning
Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

0	1	This question is about oxygen.

Scientists think that there was little or no oxygen in the Earth's early atmosphere.

| $\mathbf{0}$ | 1 | $\mathbf{1}$ | Which planet today has an atmosphere that is similar to the Earth's early |
| :--- | :--- | :--- | :--- | atmosphere?

Tick (\checkmark) one box.

Jupiter

Mars

Neptune

Saturn

0	$\mathbf{1}$	$\mathbf{2}$ Which is the approximate percentage of oxygen in the Earth's atmosphere today?

Tick (\checkmark) one box.

20\%

50\%

80\%

100\%

Question 1 continues on the next page

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ Which two of the following increased the percentage of oxygen in the Earth's |
| :--- | :--- | :--- | :--- | atmosphere?

Tick (\checkmark) two boxes.

Active volcanoes emitted gases \square
Algae and plants evolved \square
Animals evolved \square

Carbonate sediments formed in oceans

Photosynthesis took place

$\mathbf{0}$	$\mathbf{1} .4$	$\mathbf{4}$ Some scientists think that 1100 million years ago the Earth's atmosphere contained:

- 16\% oxygen
- 4\% carbon dioxide.

Complete Figure 1.

You should:

- complete the y-axis scale
- plot the percentage of oxygen in the Earth's atmosphere 1100 million years ago.

Figure 1

Percentage (\%) of gas in the Earth's atmosphere 1100 million years ago

Question 1 continues on the next page

Oxygen is produced when manganese dioxide is added to hydrogen peroxide solution.

The equation for the reaction is:

$$
\text { hydrogen peroxide } \rightarrow \text { water }+ \text { oxygen }
$$

A student investigated the effect of changing the temperature on the decomposition of hydrogen peroxide.

This is the method used.

1. Add $5 \mathrm{~cm}^{3}$ of hydrogen peroxide solution to three test tubes labelled \mathbf{A}, \mathbf{B} and \mathbf{C}.
2. Place each test tube in a water bath at a different temperature.
3. Add 0.2 g of manganese dioxide to each test tube.

Figure 2 shows the results.

Figure 2

Test tube A Test tube B Test tube C

0	1	$\mathbf{5}$	Which test tube contained hydrogen peroxide solution at the highest temperature?

Tick (\checkmark) one box.

Test tube A

Test tube B

Test tube \mathbf{C}

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{6}$	The student tested the gas produced.

What is used to prove that the gas is oxygen?
Tick (\checkmark) one box.

A glowing splint

Bromine water

Damp litmus paper

Which is a correct statement about manganese dioxide in this reaction?
Tick (\checkmark) one box.

Manganese dioxide increases the activation energy in this reaction.

Manganese dioxide is a catalyst in this reaction.

Manganese dioxide is used up during this reaction.

Manganese dioxide reduces the rate of this reaction.

$\mathbf{0}$	$\mathbf{2}$ This question is about glass and polymers.

Beakers can be made from borosilicate glass or poly(propene).
Table 1 shows information about materials used to make beakers.
Table 1

	Material used to make beakers	
	borosilicate glass	poly(propene)
Temperature at which melting begins in ${ }^{\circ} \mathbf{C}$	850	160
Flammability	does not burn	burns
Resistance to impact	shatters	tough
Cost of $\mathbf{1 0 0} \mathbf{~ c m}^{\mathbf{3}}$ beaker in $£$	1.50	2.00

| 0 | $\mathbf{2}$ | $\mathbf{1}$ | Suggest two reasons why a Bunsen burner should not be used to heat a liquid in a |
| :--- | :--- | :--- | :--- | poly(propene) beaker.

Use Table 1.

1
\qquad
2 \qquad
\qquad

0	$\mathbf{2}$	$\mathbf{2}$ Poly(propene) beakers are more expensive than borosilicate glass beakers.

Suggest one reason why using poly(propene) beakers instead of borosilicate glass beakers could save money.

Use Table 1.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$ Which is a raw material used to make borosilicate glass?

Tick (\checkmark) one box.

Boron trioxide \square
Clay

Limestone

Poly(propene) is produced from propene.
The displayed structural formula of propene is:

0	2	4	Table 2 shows some information about the elements in one molecule of propene.

Table 2

Symbol for element	Name of element	Number of atoms of element in one molecule of propene
C		
H		

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{5}$ Which structure is the repeating unit of poly(propene)?

Tick (\checkmark) one box.

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{6}$ Poly(propene) is produced in three stages:

- Stage 1: separating large alkane molecules from crude oil
- Stage 2: producing propene molecules from large alkane molecules
- Stage 3: joining many propene molecules together.

Name Stage 1, Stage 2 and Stage 3.
Choose answers from the box.

cracking	fermentation	fractional distillation
polymerisation	reverse osmosis	

Stage 1 is \qquad .

Stage 2 is \qquad .

Stage 3 is \qquad .

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{7}$	A molecule of hexene contains a double carbon-carbon bond.

Many hexene molecules join together to form poly(hexene).
Which two words describe a hexene molecule in this process?
Tick (\checkmark) two boxes.

Alkene

Catalyst

Composite

Element

Monomer

| $\mathbf{0}$ | $\mathbf{3} \quad$ This question is about chromatography. |
| :--- | :--- | :--- |

A student investigated an orange dye using paper chromatography.

0	3	$\mathbf{1}$	Figure $\mathbf{3}$ shows the apparatus at the start of the investigation.

Figure 3

Complete the labels on Figure 3.

0	3	$\mathbf{2}$

Figure 4

The student made a mistake in the investigation.
What mistake did the student make to produce the results shown in Figure 4?
Tick (\checkmark) one box.

Left the investigation for too long

Used a lid on the beaker

Used a solvent which did not dissolve the dye

Question 3 continues on the next page

A different student did the investigation correctly.
Figure 5 shows the results.
Figure 5

0	3	3
3		

0	3	4	Determine the R_{f} value for the red spot.

You should measure:

- the distance moved by the red spot
- the distance moved by the solvent.

Use Figure 5 and the equation:

$$
\mathrm{R}_{\mathrm{f}}=\frac{\text { distance moved by red spot }}{\text { distance moved by solvent }}
$$

Distance moved by red spot \qquad cm

Distance moved by solvent \qquad cm
\qquad
\qquad
$\mathrm{R}_{\mathrm{f}}=$ \qquad

0	3	5

Use Figure 5.

Tick (\checkmark) one box.

Dark yellow spot

Pale yellow spot

Red spot

| 0 | 4 |
| :--- | :--- | This question is about a reversible reaction.

A student heated calcium hydroxide to produce calcium oxide and water vapour.
This is the method used.

1. Add 2.00 g of calcium hydroxide into a test tube.
2. Heat the test tube and contents for 1 minute using a Bunsen burner.
3. Allow the test tube and contents to cool.
4. Weigh the test tube and contents.
5. Repeat steps 2 to 4 five more times.

0	4	$\mathbf{1}$	Table 3 gives the appearance of the reactant and of the products.

Table 3

	Compound	Appearance
Reactant	calcium hydroxide	white powder
Products	calcium oxide	white powder
	water vapour	colourless gas

The student looked at the test tube and contents during heating.
The student could not tell that a chemical reaction was taking place by looking at the test tube and contents.

Give two reasons why.
Use the information in Table 3.

1 \qquad
\qquad
2 \qquad
\qquad

| 0 | $\mathbf{4}$ | $\mathbf{2}$ Accurate results are not produced if solid powders escape from the test tube |
| :--- | :--- | :--- | :--- | during heating.

Suggest why sealing the test tube with a stopper is not a good way of preventing the solid powders from escaping.
\qquad
\qquad

| 0 | 4 | 3 | The student wanted to calculate the mass of the contents of the test tube after each |
| :--- | :--- | :--- | :--- | minute of heating.

The student weighed the test tube and contents after each minute of heating.
What other measurement is also needed to calculate the mass of the contents of the test tube?

Tick (\checkmark) one box.

The change in mass of the contents of the test tube at the end \square

The mass of the contents of the test tube at the start

The mass of the empty test tube \square

The student heated 2.00 g of calcium hydroxide to produce calcium oxide and water vapour.

Table 4 shows the results.
Table 4

Total heating time in minutes	Mass of contents of test tube in grams
0	2.00
1	1.76
2	1.64
3	1.56
4	1.52
5	1.51
6	1.51

0	$\mathbf{4}$.4	Complete the sentence.

Choose the answer from the box.
Use Table 4.

3 minutes 4 minutes	5 minutes	6 minutes

The minimum heating time needed for all of the calcium hydroxide to be changed into calcium oxide and water vapour is \qquad .

| 0 | 4 | 5 | Calculate the total mass of water vapour produced by heating the calcium hydroxide. |
| :--- | :--- | :--- | :--- | Use Table 4.

\qquad
\qquad

The word equation for the reaction is:

$$
\text { calcium hydroxide } \quad \rightleftharpoons \quad \text { calcium oxide } \quad+\quad \text { water }
$$

The reaction is reversible.

When 4.00 g of calcium hydroxide is completely changed into calcium oxide and water:

- 3.03 g of calcium oxide is produced
- 5.90 kJ of energy is taken in from the surroundings.

| 0 | $\mathbf{4}$ | 6 | 6.03 g of calcium oxide reacts completely with water to produce 4.00 g of calcium |
| :--- | :--- | :--- | :--- | hydroxide.

How much energy is transferred to the surroundings in this reaction?
Tick (\checkmark) one box.

Less than 5.90 kJ

5.90 kJ

More than 5.90 kJ

0	4	7

Complete the sentence.
Choose the answer from the box.

combustion	endothermic	exothermic

The forward reaction is \qquad .

| $\mathbf{0}$ | $\mathbf{5}$ This question is about greenhouse gases and climate change..$~$ |
| :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{1}$ Which two gases are greenhouse gases?

Tick (\checkmark) two boxes.

Argon

Carbon dioxide

Nitrogen

Methane

Oxygen

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{2}$ Why are greenhouse gases essential for supporting life on Earth? |
| :--- | :--- | :--- | :--- |

\qquad
\qquad

The percentage of greenhouse gases in the Earth's atmosphere today is increasing.
Many scientists think that this increase is causing global climate change.

0	5	3	What is a cause of the greenhouse effect?

Complete the sentence.

Greenhouse gases absorb long wavelength \qquad .

| 0 | 5 | .4 |
| :--- | :--- | :--- | Which two are potential effects of global climate change?

Tick (\checkmark) two boxes.

Fewer droughts

Fewer storms

Higher sea levels

Less coastal flooding

Melting polar ice

0	5	5	Water vapour is a greenhouse gas.

The percentage by mass of water vapour in the Earth's atmosphere is 0.25%.

Calculate the mass of water vapour in 350 kg of the Earth's atmosphere.
Give your answer in grams.
\qquad
\qquad
\qquad
\qquad
\qquad
Mass = \qquad g

0	6	This question is about fuels.

The energy produced by burning fuels is used to generate electricity in power stations.
Table 5 shows information about three fuels used to generate electricity.
Table 5

	Fuel		
	Coal	Oil	Natural gas
State of fuel at room temperature	solid	liquid	gas
Transportation of fuel to power station	train	pipeline	pipeline
Percentage by mass of sulfur in fuel (\%)	5	1	0.001
Relative quantity of solid particles produced when fuel is burned	high	medium	low

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{1}$ Explain why coal is usually transported to power stations by train and not by pipeline..$~$

Use Table 5.
[2 marks]
\qquad
\qquad
\qquad
\qquad

Sulfur dioxide and particulates are atmospheric pollutants produced when fuels are burned.

0	6	2

Which fuel produces the most sulfur dioxide?
Give one reason for your choice.

Fuel \qquad
Reason \qquad
\qquad

0	6	3

\qquad
\qquad

0	6	4

1 kg of each fuel in Table 5 is burned.
Which fuel produces the least particulates?
Give one reason for your choice.

Fuel \qquad
Reason \qquad
\qquad

0	6	5

\qquad
\qquad

0	6	6

Solid particles are formed when fuels undergo incomplete \qquad .

| $\mathbf{0}$ | $\mathbf{6}$ | .7 | Figure 6 shows how the use of oil and of natural gas as fuels changed in the UK |
| :--- | :--- | :--- | :--- | between 2002 and 2020.

Figure 6

Fuel use in the UK in arbitrary units

Describe the trends shown in Figure 6.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	7	This question is about alloys.

Steels are alloys of iron.

0	$\mathbf{7}$.	$\mathbf{1}$ Which non-metal element is in all steels?

Tick (\checkmark) one box.

Carbon

Iodine

Sulfur

0	$\mathbf{7}$	2	Which two elements other than iron are in stainless steels?

Tick (\checkmark) two boxes.

Chromium

Gold

Magnesium

Nickel

Zinc

Question 7 continues on the next page

0	$\mathbf{7}$	$\mathbf{3}$	Give two properties of stainless steels.

Choose answers from the box.

Property 1 \qquad
Property 2 \qquad

Titanium is used in alloys.
Table 6 shows information about some alloys of titanium.

Table 6

Titanium alloy	Other metals in alloy	Strength	Used in
A	6.0% aluminium 4.0% vanadium	high	aircraft parts hip joint replacements
B	5.0% aluminium 2.5% tin	high	aircraft parts
C	3.0% aluminium 2.5% vanadium	medium	tennis rackets heart pacemakers

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{4}$ Calculate the mass of titanium in 5.0 kg of titanium alloy \mathbf{C}.

Use Table 6.
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{5}$	Suggest why alloy \mathbf{A} and alloy \mathbf{B} are used to make aircraft parts.

Use Table 6.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$	6	Titanium alloys used for medical purposes must not be toxic.

Suggest why alloy \mathbf{B} is not used for medical purposes.
Use Table 6.
\qquad

Turn over for the next question

0	8	A student investigated the rate of the reaction between zinc and sulfuric acid.

Hydrogen gas is produced during this reaction.
Figure 7 shows the apparatus.
Figure 7

This is the method used.

1. Add $50 \mathrm{~cm}^{3}$ of sulfuric acid to a conical flask.
2. Add 2.0 g of zinc to the conical flask.
3. Quickly put a stopper in the conical flask and start a timer.
4. Measure the time taken to collect $20 \mathrm{~cm}^{3}$ of gas.
5. Repeat steps 1 to 4 three more times.

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{1}$ Suggest why the stopper must be put in the conical flask as quickly as possible in |
| :--- | :--- | :--- | step 3.

\qquad
\qquad

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{2}$ The student calculated the rate of the reaction for each trial.

Table 7 shows the results of the calculations.

Table 7

	Trial 1	Trial 2	Trial 3	Trial 4
Rate of reaction in $\mathbf{c m}^{\mathbf{3} / \mathbf{s}}$	0.78	0.81	0.68	0.81

Determine the mean time taken to collect $20 \mathrm{~cm}^{3}$ of gas.
Do not include any anomalous results.
Use the equation:

$$
\text { mean rate of reaction }=\frac{\text { volume of gas collected }}{\text { mean time taken }}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mean time taken $=$ \qquad s

Question 8 continues on the next page

 of gas was greater.

Which two changes would increase the mean time taken to collect $20 \mathrm{~cm}^{3}$ of gas?
Tick (\checkmark) two boxes.

Use a catalyst

Use a larger conical flask

Use a lower temperature

Use smaller pieces of zinc

Use sulfuric acid of a lower concentration

0	8.4	$H y d r o g e n ~ g a s ~ i s ~ p r o d u c e d ~ d u r i n g ~ t h i s ~ r e a c t i o n . ~$

Describe the test for hydrogen gas.
Give the result of the test.

Test \qquad
\qquad
Result \qquad

Use suluric acid of a lower concentration

\square

| 0 | 9 |
| :--- | :--- | This question is about alcohols and carboxylic acids.

Alcohols are used as fuels.
A student burned 1.00 g of six alcohols and determined the energy released from each.

Table 8 shows the results.
Table 8

Alcohol	Formula of one molecule of the alcohol	Energy released in $\mathbf{k J / g}$
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	29.6
Propanol	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	33.6
Butanol	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$	36.1
Pentanol	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$	37.7
Hexanol	$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{OH}$	38.9
Heptanol	$\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{OH}$	39.8

0	9	1
Calculate the mass of ethanol that must be burned to release the same amount of		

\qquad
\qquad
\qquad
\qquad
Mass = g
 of each alcohol.

Plot the data from Table 8 on Figure 8.

Figure 8

Use Figure 8.

Carbon dioxide is produced when alcohols are burned.
Carbon dioxide is identified by bubbling the gas through limewater.

0	9	4	Complete the sentence.

Choose the answer from the box.

Limewater is an aqueous solution of \qquad .

| 0 | $\mathbf{9} .5$ | $\mathbf{5}$ Give the result of the test when carbon dioxide is bubbled through limewater. |
| :--- | :--- | :--- | :--- |

Ethanoic acid can be produced from ethanol.

| 0 | $\mathbf{9} .6$ |
| :--- | :--- | :--- |

Tick (\checkmark) one box.

A halogen

An alkali metal

An oxidising agent

Water

| 0 | $\mathbf{9}$ | $\mathbf{7}$ Ethanoic acid contains the functional group -COOH |
| :--- | :--- | :--- | :--- |

Complete the displayed structural formula of this functional group.

C O

$\mathrm{O}-\mathrm{H}$

Question 9 continues on the next page

0	$\mathbf{9}$	$\mathbf{8}$	Ethanoic acid reacts with different compounds.

Draw one line from each compound to a product of the reaction of the compound with ethanoic acid.
Compound \(\left.\begin{array}{|c|}\hline Product of the reaction

with ethanoic acid\end{array}\right\}\) Carbon dioxide | Ethanol |
| :---: |
| Ethyl ethanoate |
| Sodium carbonate |
| Hydrogen |

$\mathbf{1}$	$\mathbf{0}$	This question is about chemical analysis.

Potassium bromide is used in medicine.
A scientist tested a sample of medicine to show the presence of potassium ions and of bromide ions.

The sample is soluble in water.

| 1 | 0 | 1 |
| :--- | :--- | :--- | potassium ions and bromide ions.

The scientist has:

- a Bunsen burner
- a metal wire
- test tubes
- a dropping pipette
- distilled water
- dilute nitric acid
- silver nitrate solution.

You should give the results of the tests.
\qquad

The scientist could also use an instrumental method to show the presence of potassium ions in the medicine.

| 1 | $\mathbf{0}$ | $\mathbf{2}$ Which instrumental method could be used to show the presence of potassium ions in |
| :--- | :--- | :--- | the medicine?

\qquad

1	0	3

$$
2
$$

[1 mark]
\qquad

END OF QUESTIONS

Copyright information
For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright © 2023 AQA and its licensors. All rights reserved.

