

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

GCSE CHEMISTRY

F

Foundation Tier Paper 2

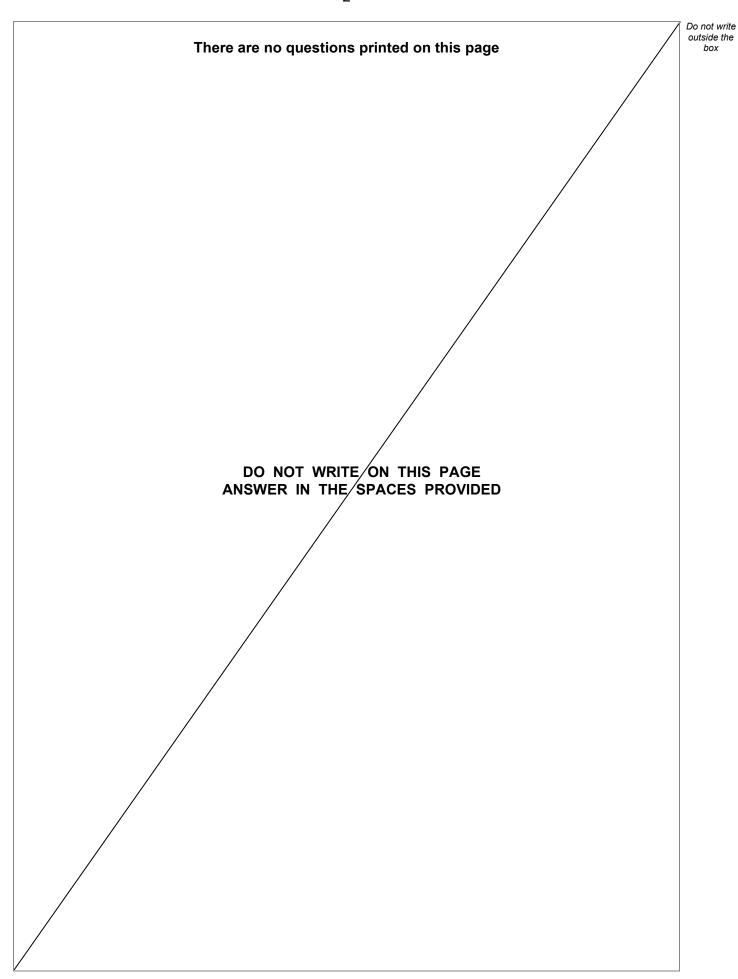
Tuesday 13 June 2023 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- · a scientific calculator
- the periodic table (enclosed).

Instructions


- Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
TOTAL				

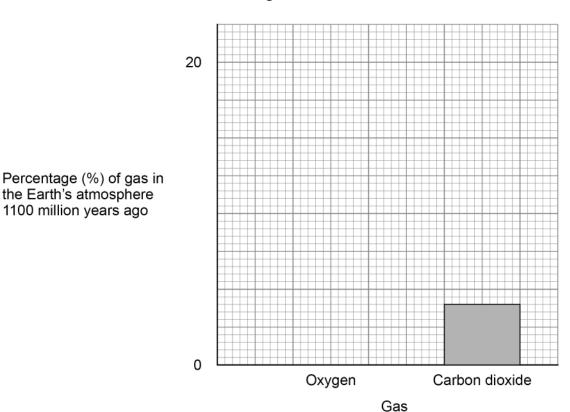
0 1	This question is about oxygen.	Do not write outside the box
	Scientists think that there was little or no oxygen in the Earth's early atmosphere.	
0 1.1	Which planet today has an atmosphere that is similar to the Earth's early atmosphere? [1 mark] Tick (✓) one box. Jupiter Mars Neptune	
	Saturn	
0 1.2	Which is the approximate percentage of oxygen in the Earth's atmosphere today? [1 mark] Tick (✓) one box.	
	20%	
	50%	
	80%	
	100%	
	Question 1 continues on the next page	

Do not write outside the box

0 1.3	Which two of the following increased the percentage of oxygen in the Earth's atmosphere? [2 m] Tick (✓) two boxes.		
	Active volcanoes emitted gases		
	Algae and plants evolved		
	Animals evolved		
	Carbonate sediments formed in oceans		
	Photosynthesis took place		

- 0 1 . 4
- Some scientists think that 1100 million years ago the Earth's atmosphere contained:
- 16% oxygen
- 4% carbon dioxide.

Complete Figure 1.


You should:

the Earth's atmosphere 1100 million years ago

- complete the y-axis scale
- plot the percentage of oxygen in the Earth's atmosphere 1100 million years ago.

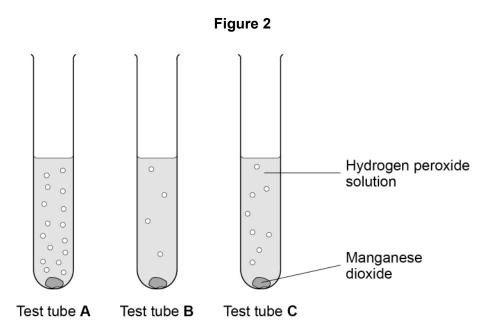
[2 marks]

Figure 1

Question 1 continues on the next page

Oxygen is produced when manganese dioxide is added to hydrogen peroxide solution.

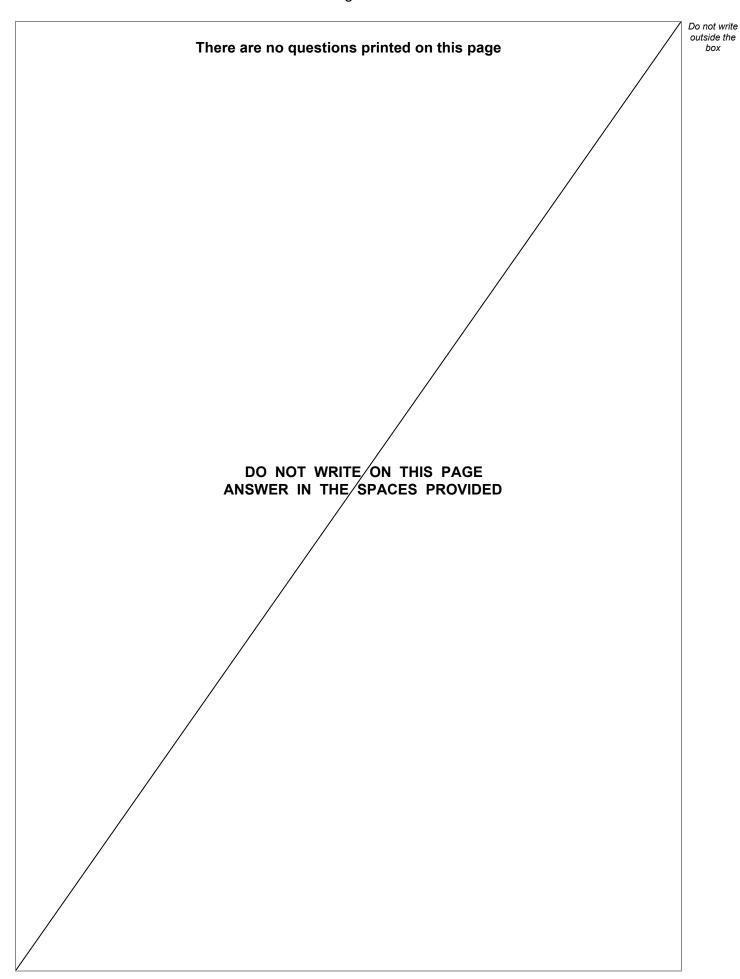
The equation for the reaction is:


hydrogen peroxide → water + oxygen

A student investigated the effect of changing the temperature on the decomposition of hydrogen peroxide.

This is the method used.

- 1. Add 5 cm³ of hydrogen peroxide solution to three test tubes labelled **A**, **B** and **C**.
- 2. Place each test tube in a water bath at a different temperature.
- 3. Add 0.2 g of manganese dioxide to each test tube.


Figure 2 shows the results.

0 1.5	Which test tube contained hydrogen peroxide solution at the highest temper		outside th
	Tick (✓) one box.	[1 mark]	
	Test tube A		
	Test tube B		
	Test tube C		
0 1.6	The student tested the gas produced.		
	What is used to prove that the gas is oxygen?	[1 mark]	
	Tick (✓) one box.	[1 mark]	
	A glowing splint		
	Bromine water		
	Damp litmus paper		
0 1.7	Manganese dioxide does not appear in the chemical equation for this reaction	on.	
	Which is a correct statement about manganese dioxide in this reaction?	[4	
	Tick (✓) one box.	[1 mark]	
	Manganese dioxide increases the activation energy in this reaction.		
	Manganese dioxide is a catalyst in this reaction.		
	Manganese dioxide is used up during this reaction.		
	Manganese dioxide reduces the rate of this reaction.		9

0 2 This question is about glass and polymers.

Beakers can be made from borosilicate glass or poly(propene).

Table 1 shows information about materials used to make beakers.

Table 1

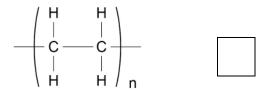
	Material used to make beakers			
	borosilicate glass	poly(propene)		
Temperature at which melting begins in °C	850	160		
Flammability	does not burn	burns		
Resistance to impact	shatters	tough		
Cost of 100 cm ³ beaker in £	1.50	2.00		

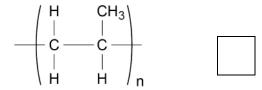
0 2.1	Suggest two reasons why a Bunsen burner should not be used to heat a liquid in a poly(propene) beaker.
	Use Table 1 . [2 marks]
	1
	2
0 2 . 2	Poly(propene) beakers are more expensive than borosilicate glass beakers.
	Suggest one reason why using poly(propene) beakers instead of borosilicate glass beakers could save money.
	Use Table 1. [1 mark]

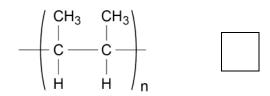
Do not write outside the box

0 2 . 3	Tick (✓) one box. Boron trioxide Clay Limestone	erial used to make borosil	icate glass? [1 mark]			
	Poly(propene) is pro-	duced from propene.				
	The displayed structural formula of propene is:					
0 2.4	Table 2 shows some	H CH ₃ C = C H H	ements in one molecule of propene.			
Table 2						
	Symbol for element	Name of element	Number of atoms of element in one molecule of propene			
	С					
	Н					
	L	<u>I</u>				

Complete Table 2.


[2 marks]




0 2.5 Which structure is the repeating unit of poly(propene)?

[1 mark]

Tick (✓) one box.

- 0 2.6 Poly(propene) is produced in three stages:
 - Stage 1: separating large alkane molecules from crude oil
 - Stage 2: producing propene molecules from large alkane molecules
 - Stage 3: joining many propene molecules together.

Name Stage 1, Stage 2 and Stage 3.

Choose answers from the box.

[3 marks]

cracking	fermentation	fractional distillation
polymerisation	rever	rse osmosis

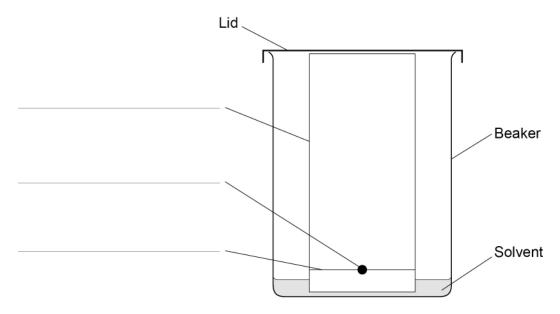
Stage 1 is ______.

Stage 2 is ______.

Stage 3 is

	Do not write outside the			
Many hexene molecules join together to form poly(hexene).				
Which two words describe a hexene molecule in this process?				
Tick (✓) two boxes.				
Alkene				
Catalyst				
Composite				
Element				
Monomer	12			
	Which two words describe a hexene molecule in this process? Tick (✓) two boxes. Alkene Catalyst Composite Element			

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED



0 3 This question is about chromatography.

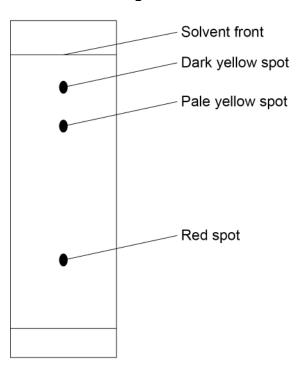
A student investigated an orange dye using paper chromatography.

0 3. 1 Figure 3 shows the apparatus at the start of the investigation.

Figure 3

Complete the labels on Figure 3.

[3 marks]


0 3.2	2 Figure 4 shows the results at the end of the investigation.				
	Figure 4				
	Orange colour				
	The student made a mistake in the investigation.				
What mistake did the student make to produce the results shown in Figure 4?					
Tick (✓) one box.					
	Left the investigation for too long				
	Used a lid on the beaker				
	Used a solvent which did not dissolve the dye				
	Question 3 continues on the next page				

Do not write outside the

A different student did the investigation correctly.

Figure 5 shows the results.

Figure 5

 	•	G ,	·	[1 mark]

0 3. 3 How do the results in **Figure 5** show that the orange dye is **not** a pure substance?

0 3.4	Determine the R_f value for the red spot.	Do not write outside the box
	You should measure:	
	the distance moved by the red spot	
	the distance moved by the solvent.	
	Use Figure 5 and the equation:	
	$R_{f} = \frac{\text{distance moved by red spot}}{\text{distance moved by solvent}}$	
	[4 marks]	
	Distance moved by red spotcm	
	Distance moved by solventcm	
	R _f =	
0 3.5	Which spot had the greatest R _f value?	
	Use Figure 5.	
	Tick (✓) one box. [1 mark]	
	Dark yellow spot	
	Pale yellow spot	
	Red spot	10
	Turn over for the next question	
	Turri over for the next question	
		1

0 4

This question is about a reversible reaction.

A student heated calcium hydroxide to produce calcium oxide and water vapour.

This is the method used.

- 1. Add 2.00 g of calcium hydroxide into a test tube.
- 2. Heat the test tube and contents for 1 minute using a Bunsen burner.
- 3. Allow the test tube and contents to cool.
- 4. Weigh the test tube and contents.
- 5. Repeat steps 2 to 4 five more times.

0 4 . 1

Table 3 gives the appearance of the reactant and of the products.

Table 3

	Compound	Appearance
Reactant	calcium hydroxide	white powder
Products	calcium oxide	white powder
Products	water vapour	colourless gas

The student looked at the test tube and contents during heating.

The student could **not** tell that a chemical reaction was taking place by looking at the test tube and contents.

Give **two** reasons why.

Use the information in Table 3.

[2 marks

'			
2			
T			

0 4.2	Accurate results are not produced if solid powders escape from the test tube during heating.				
	Suggest why sealing the test tube with a stopper is not a good way of preventir solid powders from escaping. [1	ng the			
0 4 . 3	The student wanted to calculate the mass of the contents of the test tube after eminute of heating.	each			
	The student weighed the test tube and contents after each minute of heating.				
	What other measurement is also needed to calculate the mass of the contents test tube?	of the			
	Tick (✓) one box.	mark]			
	The change in mass of the contents of the test tube at the end				
	The mass of the contents of the test tube at the start				
	The mass of the empty test tube				
	Question 4 continues on the next page				

The student heated 2.00 g of calcium hydroxide to produce calcium oxide and water vapour.

Table 4 shows the results.

Table 4

Total heating time in minutes	Mass of contents of test tube in grams
0	2.00
1	1.76
2	1.64
3	1.56
4	1.52
5	1.51
6	1.51

0	4		4	Complete the sentence.
---	---	--	---	------------------------

Choose the answer from the box.

Use Table 4.

[1 mark]

	3 minutes	4 minutes	5 minutes	6 minutes
0 4 . 5	The minimum heating calcium oxide and wa	time needed for all o	f the calcium hydroxid	e to be changed into
			Mass =	g

	Do not wri outside th box
rk]	
rk]	

	The word equation for the read	ction is:			
	calcium hydroxide	=	calcium oxide	+	water
	The reaction is reversible.				
	When 4.00 g of calcium hydrowater:	xide is compl	letely changed int	to calcium	oxide and
	• 3.03 g of calcium oxide is pr	roduced			
	• 5.90 kJ of energy is taken in	n from the su	rroundings.		
0 4 . 6	3.03 g of calcium oxide reacts hydroxide.	completely v	vith water to prod	uce 4.00 (g of calcium
	How much energy is transferre	ed to the surr	oundings in this r	eaction?	[4 o.ul-1
	Tick (✓) one box.				[1 mark]
	Less than 5.90 kJ				
	5.90 kJ				
	Marra than 5 00 lal				
	More than 5.90 kJ				
0 4 . 7	The forward reaction takes in	energy from t	the surroundings.		
	Complete the sentence.				
	Choose the answer from the b	OOX.			
					[1 mark]
	combustion	endot	hermic	exo	thermic
	The forward reaction is				

0 5	This question is about greenhouse gases and climate change.
0 5.1	Which two gases are greenhouse gases? Tick (✓) two boxes. [2 marks]
	Argon
	Carbon dioxide
	Nitrogen
	Methane
	Oxygen
0 5.2	Why are greenhouse gases essential for supporting life on Earth? [1 mark]
	The percentage of greenhouse gases in the Earth's atmosphere today is increasing. Many scientists think that this increase is causing global climate change.
0 5.3	What is a cause of the greenhouse effect? Complete the sentence. [1 mark]
	Greenhouse gases absorb long wavelength

Do not write outside the box

0 5.4	Which two are potential effects of global climate change? [2 marks]	Do not write outside the box
	Tick (✓) two boxes.	
	Fewer droughts	
	Fewer storms	
	Higher sea levels	
	Less coastal flooding	
	Melting polar ice	
0 5 . 5	Water vapour is a greenhouse gas.	
	The percentage by mass of water vapour in the Earth's atmosphere is 0.25%.	
	Calculate the mass of water vapour in 350 kg of the Earth's atmosphere.	
	Give your answer in grams. [3 marks]	
	Mass =g	9

0 6

This question is about fuels.

The energy produced by burning fuels is used to generate electricity in power stations.

Table 5 shows information about three fuels used to generate electricity.

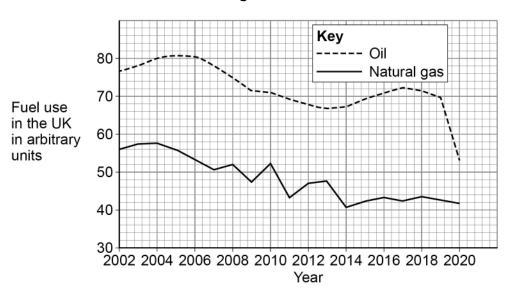
Table 5

	Fuel			
	Coal	Oil	Natural gas	
State of fuel at room temperature	solid	liquid	gas	
Transportation of fuel to power station	train	pipeline	pipeline	
Percentage by mass of sulfur in fuel (%)	5	1	0.001	
Relative quantity of solid particles produced when fuel is burned	high	medium	low	

0 6.1	Explain why coal is usually transported to power stations by train and not by pipeline		
	Use Table 5. [2 marks]		

	Sulfur dioxide and particulates are atmospheric pollutants produced when fue are burned.	els
0 6.2	1 kg of each fuel in Table 5 is burned.	
	Which fuel produces the most sulfur dioxide?	
	Give one reason for your choice.	[2 marks]
	Fuel	
	Reason	
0 6.3	Give one problem caused by sulfur dioxide.	[1 mark]
0 6.4	Particulates are formed from solid particles.	
	1 kg of each fuel in Table 5 is burned.	
	Which fuel produces the least particulates?	
	Give one reason for your choice.	[2 marks]
	Fuel	
	Reason	
0 6.5	Give one problem caused by particulates.	[1 mark]

Do not write outside the


0 6 . 6 Complete the sentend

[1 mark]

Solid particles are formed when fuels undergo incomplete ____

0 6 . 7 Figure 6 shows how the use of oil and of natural gas as fuels changed in the UK between 2002 and 2020.

Figure 6

Describe the trends shown in Figure 6 .	[3 marks]

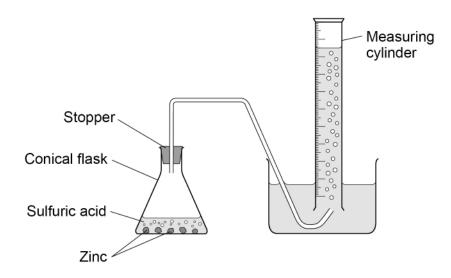
12

0 7	This question is about alloys.	Do not write outside the box
	Steels are alloys of iron.	
0 7.1	Which non-metal element is in all steels? [1 mark] Tick (✓) one box.	
	Carbon	
	lodine	
	Sulfur	
0 7.2	Which two elements other than iron are in stainless steels? [2 marks]	
	Tick (✓) two boxes.	
	Chromium	
	Gold	
	Magnesium	
	Nickel	
	Zinc	
	Question 7 continues on the next page	

7.	3	Give two p	properties of stainless stee	els.			
		Choose an	swers from the box.		[2 ma		
		brit	tle	low density			
			resistant to corrosion	soluble	in water		
	Property 2						
		Titanium is	used in alloys.				
		Table 6 sh	ows information about sor				
			Tab	le 6	1		
Tit	taniu	m alloy	Other metals in alloy	Strength	Used in		
Α			6.0% aluminium 4.0% vanadium	high	aircraft parts hip joint replacements		
В			5.0% aluminium 2.5% tin	high	aircraft parts		
С			3.0% aluminium 2.5% vanadium	medium	tennis rackets heart pacemakers		
7.	4	Calculate t	he mass of titanium in 5.0	kg of titanium alloy	C. [3 ma		

y B are used to make aircraft parts.	Do not write outside the box
[1 mark]	
ical purposes must not be toxic.	
sed for medical purposes.	
[1 mark]	
	10
	lical purposes must not be toxic. sed for medical purposes.

Turn over for the next question


0 8

A student investigated the rate of the reaction between zinc and sulfuric acid.

Hydrogen gas is produced during this reaction.

Figure 7 shows the apparatus.

Figure 7

This is the method used.

- 1. Add 50 cm³ of sulfuric acid to a conical flask.
- 2. Add 2.0 g of zinc to the conical flask.
- 3. Quickly put a stopper in the conical flask and start a timer.
- 4. Measure the time taken to collect 20 cm³ of gas.
- 5. Repeat steps 1 to 4 three more times.

0 8 . 1	Suggest why the stopper must be put in the conical flask as quickly as possible in step 3 .
	[1 mark]

Do not write outside the box

0	8	. 2	The student calculated the rate of the reaction for each trial

Table 7 shows the results of the calculations.

Table 7

	Trial 1	Trial 2	Trial 3	Trial 4
Rate of reaction in cm³/s	0.78	0.81	0.68	0.81

Determine the me	ean time taken to collect	20 cm³ of gas.	
Do not include ar	ny anomalous results.		
Use the equation	:		
	mean rate of reaction =	volume of gas collected mean time taken	
		mean ume taken	[5 marks]
		Mean time taken =	s

Question 8 continues on the next page

0 8.3	The student changed the investigation so that the mean time taken to collect 20 cm ³ of gas was greater.	Do not wr outside the box
	Which two changes would increase the mean time taken to collect 20 cm³ of gas? [2 marks]	
	Tick (✓) two boxes.	
	Use a catalyst	
	Use a larger conical flask	
	Use a lower temperature	
	Use smaller pieces of zinc	
	Use sulfuric acid of a lower concentration	
0 8.4	Hydrogen gas is produced during this reaction.	
	Describe the test for hydrogen gas.	
	Give the result of the test. [2 marks]	
	Test	
	Result	
		10

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

0 9

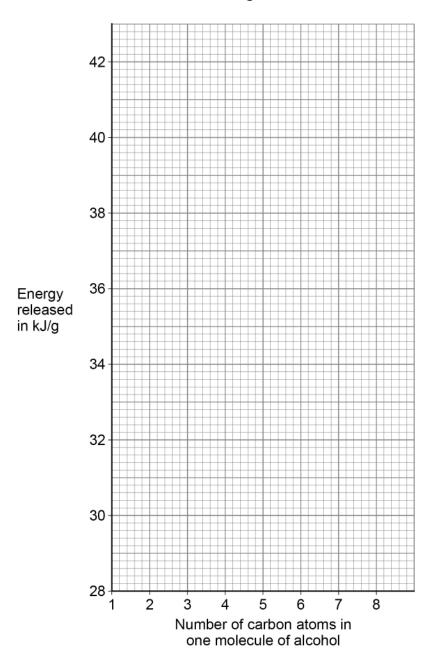
This question is about alcohols and carboxylic acids.

Alcohols are used as fuels.

A student burned 1.00 g of six alcohols and determined the energy released from each.

Table 8 shows the results.

Table 8


Alcohol	Formula of one molecule of the alcohol	Energy released in kJ/g
Ethanol	C₂H₅OH	29.6
Propanol	C₃H ₇ OH	33.6
Butanol	C ₄ H ₉ OH	36.1
Pentanol	C₅H₁₁OH	37.7
Hexanol	C ₆ H ₁₃ OH	38.9
Heptanol	C ₇ H ₁₅ OH	39.8

0 9.1	Calculate the mass of ethanol that must be burned to release the same amount of energy as burning 1.00 g of heptanol.
	[2 marks]
	Mass = q
	Mass =g
0 9.2	The energy released in kJ/g varies with the number of carbon atoms in one molecule of each alcohol.
	Plot the data from Table 8 on Figure 8 . [2 marks]

0 9.3 Estimate the energy released in kJ when 1.00 g of octanol (C₈H₁₇OH) is burned.

Use **Figure 8**.

[1 mark]

Energy released = _____ kJ

	Carbon dioxide is produced when alcohols are burned.
	Carbon dioxide is identified by bubbling the gas through limewater.
0 9.4	Complete the sentence. Choose the answer from the box.
	[1 mark]
	calcium chloride calcium hydroxide calcium nitrate calcium sulfate
	Limewater is an aqueous solution of
0 9.5	Give the result of the test when carbon dioxide is bubbled through limewater. [1 mark]

	Ethanoic acid can be produced from ethanol.	Do not write outside the box
0 9.6	What is reacted with ethanol to produce ethanoic acid? Tick (✓) one box. [1 mark]	
	A halogen	
	An alkali metal	
	An oxidising agent	
	Water	
0 9.7	Ethanoic acid contains the functional group –COOH	
	Complete the displayed structural formula of this functional group. [1 mark]	
	-c o	
	O-H	
	Question 9 continues on the next page	

0 9 . 8 Ethanoic acid reacts with different compounds.

Draw **one** line from each compound to a product of the reaction of the compound with ethanoic acid.

[2 marks]

Compound

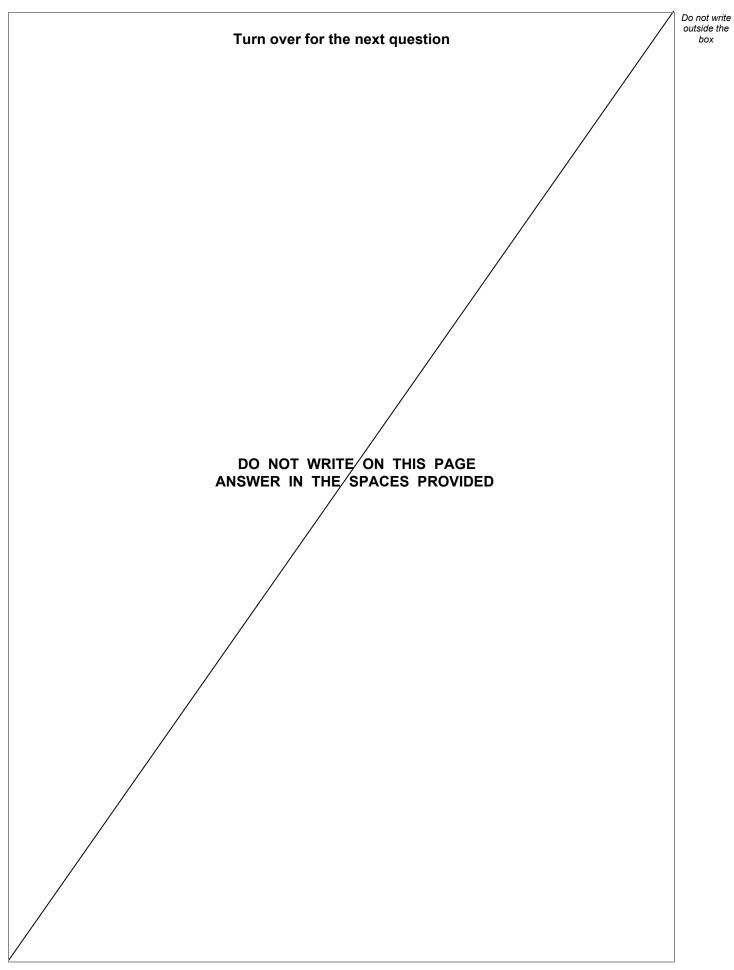
Ethanol

Sodium carbonate

Product of the reaction with ethanoic acid

Carbon dioxide

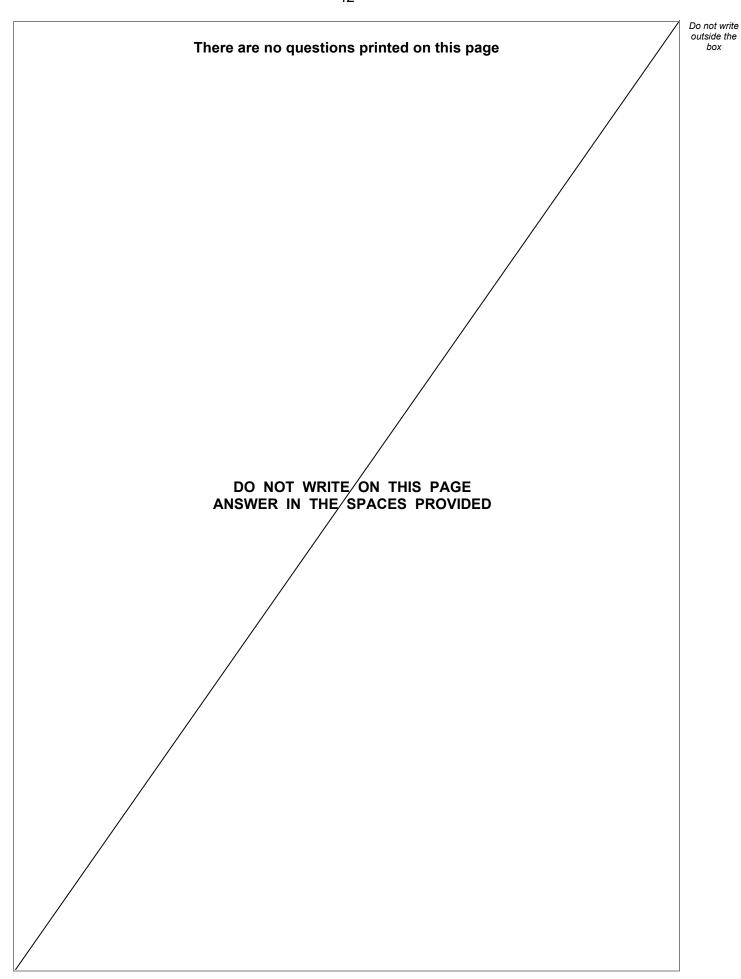
Ethene


Ethyl ethanoate

Hydrogen

Poly(ethene)

11


1 0	This question is about chemical analysis.	Do not write outside the box
	Potassium bromide is used in medicine.	
	Potassium bromide is used in medicine.	
	A scientist tested a sample of medicine to show the presence of potassium ions and of bromide ions.	
	The sample is soluble in water.	
10.1	Plan a method the scientist could use to show that the sample of medicine contains potassium ions and bromide ions.	
	The scientist has:	
	a Bunsen burner	
	a metal wire	
	• test tubes	
	a dropping pipette	
	distilled water	
	dilute nitric acid	
	silver nitrate solution.	
	You should give the results of the tests. [6 marks]	
		1

	The scientist could also use an instrumental method to show the presence of potassium ions in the medicine.	Do not write outside the box
1 0.2	Which instrumental method could be used to show the presence of potassium ions in the medicine? [1 mark]	
1 0 . 3	Give one advantage of using this instrumental method instead of a chemical test. [1 mark]	
		8

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the
	Copyright © 2023 AQA and its licensors. All rights reserved.

