$A Q / A$

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

A-level PHYSICS

Paper 3

Section A

Thursday 15 June 2023
Morning
Time allowed: The total time for both sections of this paper is

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet
- a protractor.

2 hours. You are advised to spend approximately 70 minutes on this section.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of

For Examiner's Use	
Question	Mark
1	
2	
3	
TOTAL	

- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 45 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Section A

Answer all questions in this section.

0	1	A stroboscope emits bright flashes of white light.

The duration of each flash and the frequency of the flashes can be varied.
Table 1 shows information about the stroboscope.
Table 1

	Minimum	Maximum
Duration of each flash $/ \mu \mathrm{s}$	60	300
Frequency of flashes $/ \mathrm{Hz}$	1	150

The duration of each flash is T_{1}.
The time from the start of a flash to the start of the next flash is T_{2}.
The duty cycle of a stroboscope is defined as $\frac{T_{1}}{T_{2}}$.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ What is the maximum duty cycle of the stroboscope? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.
6.0×10^{-5}

3.0×10^{-4}

9.0×10^{-3} \square
4.5×10^{-2} \square

0	1	2
2		

illuminated by a stroboscope.
The stroboscope flashes at a constant frequency.
Figure 1

Suggest why T_{1} must be very short for this experiment.
[1 mark]
\qquad
\qquad
\qquad

Question 1 continues on the next page

Figure 2 shows the first six images starting with $n=0$, where n is the image number.
Figure 2

The images are used to determine:
H, the vertical distance from the bottom of the ball to the floor when $n=0$
h, the vertical distance from the bottom of the ball to the floor for each non-zero value of n.

The $n=N$ image is produced at the instant that the ball hits the floor for the first time. For n between 0 and N it can be shown that

$$
H-h=\frac{u_{0} n}{f}+\frac{g}{2}\left(\frac{n}{f}\right)^{2}
$$

where
u_{0} is the vertical velocity of the ball when $n=0$
g is the acceleration due to gravity
f is the frequency of the flashes.

\qquad
\qquad
\qquad

The following data are recorded.

$$
\begin{aligned}
H & =1550 \mathrm{~mm} \\
f & =31.0 \mathrm{~Hz}
\end{aligned}
$$

The graphical analysis of data from Figure 1 gives g as $9.79 \mathrm{~m} \mathrm{~s}^{-2}$.

0	1	4	Determine u_{0}.

\qquad

Figure 3 shows positions of the bottom of the ball for $n=40$ to $n=66$ In this range of positions, the ball makes contact with the floor for the second and third times.
Values of h, the vertical distance from the bottom of the ball to the floor, are plotted on the y-axis.
Values of s, the horizontal displacement from a point on the floor below the centre of the $n=0$ image, are plotted on the x-axis.

Figure 3

| 0 | 1 | 5 |
| :--- | :--- | :--- | contacts of the ball with the floor.

horizontal velocity $=$ \qquad $\mathrm{mm} \mathrm{s}^{-1}$

| 0 | 1 | 6 | Determine the time between the second and third contacts. |
| :--- | :--- | :--- | :--- | Annotate Figure 3 to show your method.

$$
4
$$

| 0 | 2 |
| :--- | :--- | Figure $\mathbf{4}$ is a plot of current-voltage data for a filament lamp L.

Figure 4

 steady rate.
These data were obtained using a current sensor and a voltage sensor connected to a data logger.
The logger recorded data at a rate of 2.5 Hz .

$\mathbf{0}$	2	$\mathbf{1}$ Determine, in $\mathrm{V} \mathrm{s}^{-1}$, the rate of increase of V.....$~$

1
\qquad

2
\qquad
\qquad

Question 2 continues on the next page

0	2	3	Figure 5 shows two circuits that can be used to collect current-voltage data.

Figure 5

The dc supply has an emf of 12 V and negligible internal resistance.
The current sensor and the voltage sensor behave as ideal meters.
In circuit 1:

- \mathbf{X} is used as a variable resistor with a maximum resistance of 14.9Ω
- when \mathbf{X} is set to maximum resistance, the resistance of L is 2.3Ω.

In circuit 2, \mathbf{X} is used as a potential divider.

Discuss, with reference to circuit 1 and circuit 2, whether either circuit can produce all the data shown in Figure 4.
Support your answer with a calculation.

Table 2 shows some values of V that are plotted on Figure 4 and corresponding results for I and for the power P dissipated in \mathbf{L}.

Table 2

$\boldsymbol{V} / \mathbf{V}$	$\boldsymbol{I} / \mathbf{A}$	$\boldsymbol{P} / \mathbf{W}$
3.30	1.07	3.53
5.17	1.32	
7.69	1.59	12.2
9.58	1.94	22.3
11.47		

0	2	4	Complete Table 2.

You should use only the data in your completed Table 2.

Figure 6

Question 2 continues on the next page

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{6} \mathrm{L}$ is connected to a 12 V power supply of negligible internal resistance.

\mathbf{L} then dissipates its rated power P_{r}.
A second lamp, identical to \mathbf{L}, is now connected in series with \mathbf{L}.
Determine the percentage of P_{r} that is dissipated in this circuit.

0	$\mathbf{3}$	Figure 7a shows the front view of a vertical coil mounted on a circular frame.

Figure $\mathbf{7 b}$ is a side view showing a section through the frame and coil.
A constant direct current in the coil produces magnetic flux represented by the magnetic field lines on this diagram.

Figure 7a

Point \mathbf{Q} is at the centre of the coil.
A sensor placed at \mathbf{Q} detects B_{H}, the horizontal component of the magnetic flux density.
The effect of the Earth's magnetic field at \mathbf{Q} is negligible.

$\mathbf{0}$	$\mathbf{3} .1$	Discuss whether a search coil is a suitable sensor to detect B_{H}.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 continues on the next page
B_{H} is measured at \mathbf{Q} with the coil vertical.
The coil is now rotated about \mathbf{Q} through 25° as shown in Figure 8. The current in the coil does not change.

Figure 8

A new measurement of B_{H} is made with the coil fixed in this new position.

| 0 | 3 | 2 |
| :--- | :--- | :--- | Show your working.

percentage change $=$ \qquad \%

| 0 | 3 | 3 |
| :--- | :--- | :--- | is rotated.

Figure 9

Estimate the percentage uncertainty in this result. Justify your answer.
percentage uncertainty $=$ \%

Question 3 continues on the next page

Figure 10 shows an arrangement of two vertical coils.
Four experiments are done using this arrangement.
Figure 10

Coil 1 and coil 2 are identical and have a radius r.
The coils are separated by a distance r and have a common axis PR.
\mathbf{Q} is at the centre of coil $\mathbf{1}$.
The four different experiments investigate how B_{H} varies with x, the displacement of the sensor from \mathbf{Q} along $\mathbf{P R}$.

In experiment 1, the current in coil $\mathbf{1}$ is 225 mA and the current in coil $\mathbf{2}$ is zero.
In experiment 2, the current in coil $\mathbf{1}$ is zero and the current in coil $\mathbf{2}$ is 225 mA .

Figure 11 shows the results of experiment 1 and experiment 2.
Figure 11

Key
—— experiment 1 ----- experiment 2

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{4}$ During experiment $\mathbf{1}, B_{\mathrm{H}}$ is measured with the sensor at \mathbf{Q}.....$~$

The sensor is then moved along PR until the value of B_{H} is halved.
The distance from \mathbf{Q} to the sensor is $x_{0.5}$
Determine $\frac{x_{0.5}}{r}$
\qquad

In experiment 3, the current in both coils is 225 mA so that the magnetic fields produced by coil $\mathbf{1}$ and coil $\mathbf{2}$ are combined.

The resultant B_{H} has a constant maximum value in the region between $x=\frac{r}{4}$ and $x=\frac{3 r}{4}$

| 0 | 3 | $\mathbf{5}$ Deduce, in mT , the value of B_{H} in this region. |
| :--- | :--- | :--- | :--- |

0	3	6

1
\qquad
\qquad
2 \qquad
\qquad
\qquad

| 0 | 3 | $\mathbf{7}$ | In experiment 4, the current in coil $\mathbf{2}$ is reversed so that the direction of the magnetic |
| :--- | :--- | :--- | :--- | field produced by coil 2 is also reversed.

The magnitudes of the currents in coil $\mathbf{1}$ and coil $\mathbf{2}$ are still 225 mA .
Sketch a graph to show how B_{H} varies between $x=0$ and $x=r$. The x-axis has been provided for you.

Your graph should include numerical values on your B_{H} axis that correspond to $x=0$ and $x=r$.

Copyright information

For

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team

