AQAE

Please write clearly in block capitals.
Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

A-level CHEMISTRY

Paper 3

Friday 23 June 2023
Morning
Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
Section B	
TOTAL	

- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90 .

Advice

- You are advised to spend 70 minutes on Section A and 50 minutes on Section B.

Section A

Answer all questions in this section.

| $\mathbf{0}$ | $\mathbf{1}$ | Ethyl ethanoate can be made by reacting ethanol with ethanoic acid in the presence |
| :--- | :--- | :--- | of concentrated sulfuric acid.

Method

1. A mixture of ethanol, ethanoic acid, and concentrated sulfuric acid, with anti-bumping granules, is heated under reflux for 10 minutes.
2. The apparatus is rearranged for distillation.
3. The mixture is heated to collect the liquid that distils between 70 and $85^{\circ} \mathrm{C}$
4. The distillate is placed in a separating funnel. Aqueous sodium carbonate is added, and a stopper is placed in the funnel. The mixture is shaken, releasing pressure as necessary.
5. The lower aqueous layer is removed and the upper organic layer is placed in a small conical flask.
6. Anhydrous calcium chloride is added to the sample in the conical flask. The flask is shaken well and left for a few minutes.
7. The liquid from the flask is redistilled and the distillate is collected between 74 and $79^{\circ} \mathrm{C}$

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	State the role of concentrated sulfuric acid in this reaction.

\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	The reaction mixture is flammable.

Suggest how the reaction mixture should be heated in step 1.
\qquad
\qquad

| 0 | 1 | 3 | Figure 1 shows how a student set up the apparatus for reflux in step 1. |
| :--- | :--- | :--- | :--- | You should assume that the apparatus is clamped correctly.

Figure 1

Identify two mistakes the student made in setting up the apparatus.
State the problem caused by each mistake.
[4 marks]
Mistake 1 \qquad
\qquad
Problem caused \qquad
\qquad
\qquad
Mistake 2 \qquad
\qquad
Problem caused \qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{4}$	State why sodium carbonate is added to the distillate in step 4.

Explain why there is a build-up of pressure in the separating funnel.
\qquad
\qquad
\qquad
\qquad

| 0 | $\mathbf{1}$ | $\mathbf{5}$ Give a reason why two layers form in the separating funnel. |
| :--- | :--- | :--- | :--- |

Suggest why ethyl ethanoate forms the upper layer.

Reason
\qquad
Suggestion \qquad
\qquad

0	1	6

0	1	$\mathbf{7}$	A student uses the method to prepare some ethyl ethanoate.

The student adds $10.0 \mathrm{~cm}^{3}$ of ethanol ($M_{\mathrm{r}}=46.0$) to 5.25 g of ethanoic acid ($M_{r}=60.0$) and obtains 5.47 g of ethyl ethanoate ($M_{\mathrm{r}}=88.0$).

For ethanol, density $=0.790 \mathrm{~g} \mathrm{~cm}^{-3}$
Determine the limiting reagent.
Calculate the percentage yield of ethyl ethanoate.

Limiting reagent \qquad

Percentage yield

\qquad

| $\mathbf{0}$ | $\mathbf{2}$ This question is about isomerism and the dehydration of alcohols. |
| :--- | :--- | :--- |

Pentan-2-ol has the molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$

| $\mathbf{0}$ | $\mathbf{2} .1$ | $\mathbf{1}$ |
| :--- | :--- | :--- | be dehydrated to form a single alkene.

| 0 | $\mathbf{2}$ | $\mathbf{2}$ Draw the skeletal formula of a chain isomer of pentan-2-ol that can be dehydrated to |
| :--- | :--- | :--- | :--- | form a mixture of alkenes.

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{3}$ Draw the structure of an unbranched functional group isomer of pentan-2-ol. |
| :--- | :--- | :--- | :--- |

| $\mathbf{0}$ | $\mathbf{2}$ | .4 Another isomer of pentan-2-ol is an alcohol that is not dehydrated when heated with |
| :--- | :--- | :--- | concentrated sulfuric acid.

Draw the structure of this isomer.

$\mathbf{0}$	$\mathbf{2} .5$	$\mathbf{5}$ An incomplete mechanism for the dehydration of a compound is shown.

Complete the mechanism for this reaction by drawing two curly arrows on the intermediate.

Name the mechanism for this reaction.

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{6}$ An isomer of the final product can also form in the reaction in Question 02.5. |
| :--- | :--- | :--- | Draw the structure of this isomer.

0	$\mathbf{3}$	Endomorphin-2 is a peptide with the amino acid sequence shown.

Tyr-Pro-Phe-Phe-NH2

Each amino acid is represented by a three-letter abbreviation.
Tyr = tyrosine Pro = proline \quad Phe $=$ phenylalanine
Figure 2 shows part of the structure of endomorphin-2, showing the Tyr-Pro-Phepart of the molecule.

Figure 2

| $\mathbf{0}$ | $\mathbf{3} .1$ | $\mathbf{1}$ The $-\mathrm{NH}_{2}$ at the end of the amino acid sequence of endomorphin- 2 shows that the |
| :--- | :--- | :--- | terminal functional group is an amide, not an acid.

Complete the structure of endomorphin-2 in Figure 2.

	A student hydrolyses a sample of endomorphin-2 to break it down into its constituent amino acids.
	The student analyses the resulting mixture by thin-layer chromatography, TLC.
0 3 .3	State a reagent and the conditions needed for the hydrolysis.
	[2 marks]
	Reagent
	Conditions

A student hydrolyses a sample of endomorphin-2 to break it down into its constituent box

Conditions \qquad

0	3	4	Figure 3 shows the apparatus used for the TLC.

Figure 3

There is a piece of the apparatus missing from Figure 3. This omission will result in an inaccurate chromatogram.

Identify the missing piece of the apparatus.
State and explain why this piece of the apparatus is needed.

Missing piece \qquad
Explanation \qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{5}$ State why the amino acids separate on the TLC plate. |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad
When the solvent has risen up the TLC plate, the student removes the plate from the beaker and sprays it with a developing agent.

Figure 4 shows the result.
Figure 4

State why the developing agent is needed.

Name \qquad
Why needed \qquad
\qquad
\qquad

0	$\mathbf{3}$.	$\mathbf{7}$

Do not write

Turn over for the next question

The student does a series of tests on the solutions.
Table 1 shows these tests and the observations.
Table 1

Test	Observations with L	Observations with M
Add ammonia solution slowly until in excess.	A red-brown precipitate forms that is insoluble in excess.	A green precipitate forms that is insoluble in excess.
Add sodium carbonate solution.	A red-brown precipitate forms. Effervescence is seen.	A green precipitate forms.
Add dilute nitric acid and then divide into two portions.	No change is seen.	No change is seen.
Add barium chloride solution to the first portion.	No change is seen.	A white precipitate forms.
Add silver nitrate solution to the second portion.	A white precipitate forms.	No change is seen.

Identify \mathbf{L} and \mathbf{M} using the results in Table 1.
In your answer:

- identify all precipitates
- explain why effervescence is seen in the reaction of sodium carbonate with L but not with M
- give ionic equations for all reactions.
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ The molar enthalpy of vaporisation ($\Delta H_{\text {vap }}$) of a liquid is the enthalpy change when one |
| :--- | :--- | mole of liquid is converted to vapour at the boiling point of the liquid.

A student does an experiment to determine $\Delta H_{\text {vap }}$ for water.
The student:

- places a large beaker on a balance
- pours $500 \mathrm{~cm}^{3}$ of water into the beaker
- uses a 2.4 kW heater to raise the temperature of the water to $100^{\circ} \mathrm{C}$
- records the mass of the beaker and hot water
- uses the 2.4 kW heater to boil the water for 100 s
- records the mass of the beaker and remaining water.

The loss in mass is 103 g

$\mathbf{0}$	$\mathbf{5} .1$	Calculate $\Delta H_{\text {vap }}$ for water.

$\left[1 \mathrm{~kW}=1 \mathrm{~kJ} \mathrm{~s}^{-1}\right.$]

Table 2 shows some data about three compounds that all contain the same number of electrons.

Table 2

Compound	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$
Boiling point / K	352	290	248

0	$\mathbf{5} .2$	$\mathbf{2}$ All three compounds in Table $\mathbf{2}$ are polar.

Ethanol is the most polar and ethylamine is the least polar.
Explain why all three molecules are polar and why ethylamine is the least polar. In your answer refer to the shapes around, and relative electronegativities of, the most electronegative atoms.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	$\mathbf{5}$	$\mathbf{3}$	Explain the trend in the boiling points of the three compounds.

Refer to the intermolecular forces in all three compounds in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0 0 6	Calcium hydroxide is almost insoluble in water, but it reacts with dilute hydrochloric acid.
	$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
	A student adds $100 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid to 0.600 g of solid calcium hydroxide.

| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{1}$ Show, by calculation, that the calcium hydroxide is in excess. |
| :--- | :--- | :--- | :--- |

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{2}$ The final mixture contains a saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ at 293 K |
| :--- | :--- | :--- | At 293 K

- the solubility of $\mathrm{Ca}(\mathrm{OH})_{2}$ in this solution is $0.400 \mathrm{~g} \mathrm{dm}^{-3}$
- $K_{w}=6.80 \times 10^{-15} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$

Calculate the pH of this solution.
Give your answer to two decimal places.

Section B

Answer all questions in this section.

Only one answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.
CORRECT METHOD WRONG METHODS $\quad \infty$ O $\propto \varnothing$

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.
Do not use additional sheets for this working.
\qquad

0	$\mathbf{7}$	Which row shows the number of each fundamental particle in one ${ }^{25} \mathrm{Mg}^{2+}$ ion?

	protons	neutrons	electrons
A	12	12	10
B	14	11	12
C	12	13	10
D	12	13	12

| 0 | 8 |
| :--- | :--- | What is the relative molecular mass $\left(M_{r}\right)$ of benzene-1,4-dicarboxylic acid?

A 164.0

B 166.0

C 168.0

D 170.0 o

0	9	Which substance has significant electron delocalisation?		
[1 mark]				
		A graphite 0		
		B iodine $\quad 0$		
		C sodium chloride ob		
		D tetrachloromethane 0		
		Which reaction has a standard enthalpy change equal to the standard enthalpy of formation for barium chloride?		
				[1 mark]
		$\mathrm{ABa}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s})$	0	
		B $\left.\mathrm{Ba}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-} \mathrm{g}\right) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s})$	0	
		C Ba(s) $+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s})$	\bigcirc	
		D $\mathrm{Ba}^{2+}(\mathrm{s})+2 \mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s})$	0	

A graphite
B iodine 0

D tetrachloromethane 0

Which reaction has a standard enthalpy change equal to the standard enthalpy of formation for barium chloride?
$\mathrm{A} \mathrm{Ba}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s}) \quad 0$
$B \mathrm{Ba}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s})$ \square
C $\mathrm{Ba}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s})$
0

1	1	This is a Maxwell-Boltzmann distribution for a gaseous reactant.

What is represented by the total area under the curve?

A total energy of the particles

B activation energy for the reaction

C total number of reacting particles

D total number of particles present

12 The rate of reaction is greater when a catalyst is used, without changing the temperature.

Which statement explains why the rate of reaction is greater with a catalyst?

A The collision frequency increases because
 the catalysed reaction has a lower activation energy.
B The collision frequency increases because there is an increase in the average energy of the particles.
C The proportion of successful collisions increases because the catalysed reaction has a lower activation energy.

D The proportion of successful collisions increases because there is an increase in the average energy of the particles.

$$
\mathrm{HF}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})
$$

At equilibrium, $[\mathrm{HF}]=7.70 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ and $[\mathrm{F}-]=2.30 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
What is the value of the equilibrium constant, in $\mathrm{mol} \mathrm{dm}^{-3}$, at 298 K ?

A 1.45×10^{3}

B 3.35

C 2.99×10^{-1} \circ

D 6.87×10^{-4}
○

| $\mathbf{1}$ | $\mathbf{4} \quad$ In which oxide is the named element in its highest oxidation state? |
| :--- | :--- | :--- |

A chlorine in ClO_{2} \square
B magnesium in MgO 0

C nitrogen in $\mathrm{N}_{2} \mathrm{O}_{4}$

D sulfur in SO_{2}

| 1 | 5 |
| :--- | :--- | What happens when water is vaporised?

A Covalent bonds break within molecules. \square
B Intermolecular forces are overcome. \square
C The enthalpy of the molecules decreases. \square
D The disorder of the molecules decreases. \square

1	6	Which species can behave as a Brønsted-Lowry acid in aqueous solution?

A $\mathrm{SO}_{4}{ }^{2-}$ \square
B $\mathrm{HCO}_{3}{ }^{-}$

C BF_{3} \square
D NH_{3} \square
$1 \mathbf{7}$ Which change causes the pH of $10 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ to be halved at 298 K ? $K_{w}=1.0 \times 10^{-14}$ at 298 K

A adding $10 \mathrm{~cm}^{3}$ of water \square
B adding $10 \mathrm{dm}^{3}$ of water
C adding $5 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
D adding $10 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$

1	8	A $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of a weak acid has $\mathrm{pH}=2.50$

What is the value of K_{a} for this acid, in $\mathrm{mol} \mathrm{dm}^{-3}$?

A 3.16×10^{-2}

B 3.16×10^{-3}

C 1.00×10^{-4}

D 1.00×10^{-5}
0

1 9		Which statement is not correct about the Period 3 elements sodium to chlorine?		
				[1 mark]
		A Sodium has the largest atomic radius.	\bigcirc	
		B Sodium has the lowest melting point.	\bigcirc	
		C Silicon has the highest melting point.	\bigcirc	
		D Chlorine has the highest first ionisation energy.	\bigcirc	
2	0	Equal volumes of pairs of solutions are mixed.		
		Which pair forms a buffer solution?]
		A ammonia and ammonium chloride 0		
		B ammonia and methylamine 0		
		C ethanoic acid and methanoic acid O		
		D hydrochloric acid and sodium hydroxide 0		
2	1	Barium metal is added to a large excess of water. Which observation is correct and complete?		
		A a colourless solution		
		B a colourless solution with effervescence		
		C a dense white precipitate		
		D a dense white precipitate with effervescence		

A ammonia and ammonium chloride
0 0 0 \circ

A a colourless solution

B a colourless solution with effervescence

C a dense white precipitate
D a dense white precipitate with effervescence0

| 2 | 5 | Which statement about catalysts used in reactions at equilibrium, at a |
| :--- | :--- | :--- | constant temperature, is correct?

A They are always used in the solid state.
B They increase the rate of the forward reaction but decrease the rate of the reverse reaction.

C They have no effect on the value of the equilibrium constant.
D They make the forward reaction more exothermic.

```
O
```

$\mathbf{2}$	$\mathbf{6}$ Consider this reaction scheme.

Step 3

Which step is shown with a correct reagent and a correct condition?

A Step 1 HCN dissolved in water \square
B Step 2 KOH dissolved in warm water \square
C Step $4 \mathrm{CH}_{3} \mathrm{OH}$ with an alkaline catalyst $\quad \circ$
D Step $5 \quad \mathrm{H}_{2}$ with a nickel catalyst \square

| 2 | 9 |
| :--- | :--- | :--- |

A

\square

B

\square

C

\square
[1 mark]

0

\square
D

| 3 | $\mathbf{0} \quad$ Most scientists believe that the concentration of ozone in the upper atmosphere |
| :--- | :--- | should not be allowed to decrease.

Which statement is a correct reason for this belief?

A Ozone helps to prevent global warming. \square
B Ozone is an efficient disinfectant. \square
C Ozone helps to remove pollutants such as chloroalkanes. \square
D Ozone absorbs ultraviolet radiation. \square

3	$\mathbf{1}$	Compound \mathbf{X} can be converted into an alcohol in a two-stage process.

What is the name of compound \mathbf{X} ?

A propene

B propanal

C methylbenzene \square
D ethanamide

| $\mathbf{3}$ | $\mathbf{2}$ Which is a correct equation for the oxidation of 1-phenylethanol? |
| :--- | :--- | :--- | [O] represents oxygen from an oxidising agent.

A $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+2[\mathrm{O}] \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$
B $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O}$
C $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+[\mathrm{O}] \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O}$
D $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+[\mathrm{O}] \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O}$

Which method would distinguish between samples of these compounds?

A comparing fingerprint regions of their infrared spectra

B obtaining molecular masses from their high resolution mass spectra 0
C warming with acidified potassium dichromate(VI) solution
D warming with Tollens' reagent

3	4	Which compound is the strongest base?

A

B

C NH_{3}

D $\mathrm{NH}_{4} \mathrm{Cl}$

3	5	Which statement about enzymes is not correct?

The tertiary structure of an enzyme influences which molecules can bind to the active site.

The action of enzymes can be inhibited by a molecule or ion that binds to the active site.

C Enzymes work equally well on both optical isomers of a substrate. \square
D Computers can be used to design drugs to block active sites on enzymes.

| $\mathbf{3}$ | 6 |
| :--- | :--- | | Cisplatin has the formula $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ |
| :--- |
| Cisplatin is an anti-cancer drug that prevents replication of DNA. |
| When cisplatin bonds to DNA , which is the correct ligand replacement reaction? |
| [1 mark] |\quad| A replacement of one NH_{3} ligand |
| :--- |
| B replacement of two NH_{3} ligands |
| C replacement of one NH_{3} ligand and one Cl^{-}ligand |
| D replacement of two Cl^{-}ligands |

Cisplatin has the formula $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
Cisplatin is an anti-cancer drug that prevents replication of DNA.
When cisplatin bonds to DNA, which is the correct ligand replacement reaction?

A replacement of one NH_{3} ligand
B replacement of two NH_{3} ligands

D replacement of two Cl^{-}ligands
0

END OF QUESTIONS
There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	\qquad

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the

Copyright © 2023 AQA and its licensors. All rights reserved.

