

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Monday 12 June 2023

Morning

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

	Answer all questions in the spaces provided.	Do not outside box
0 1	This question is about complexes of the transition metal chromium.	
0 1.1	State the meaning of the term transition metal complex. [1 mark]	
	$Cr(PF_3)_6$ is a complex of chromium that contains molecules of PF_3	
0 1.2	The electron pair repulsion theory can be used to predict the shape of a PF_3 molecule.	
	Draw the shape of a PF_3 molecule. Include any lone pairs of electrons that influence the shape.	
	Name the shape. [2 marks]	
	Shape	
	Name of shape	
0 1.3	Suggest why the oxidation state of chromium is zero in $Cr(PF_3)_6$	
	[1 mark]	

	The compound $[Cr(NH_3)_4Cl_2]Cl$ contains ammonia molecules.		Do not write outside the box
0 1.4	Deduce the oxidation state of chromium in $[Cr(NH_3)_4Cl_2]Cl$	[1 mark]	
0 1.5	Name the type of bond between N and H in ammonia.	[1 mark]	
0 1.6	The compound $[Cr(NH_3)_4Cl_2]Cl$ contains a complex ion that shows isomeris Draw the two isomers of the complex ion. State the type of isomerism shown.	m.	
	Isomer 1 Isomer 2	[3 marks]	
	Type of isomerism		
01.7	Complete the equation to show the formation of one complex that contains in its +3 oxidation state.	chromium [1 mark]	
	$CrCl_3 + 5H_2O \rightarrow$		10

0 3	This question is about Period 3 elements and their oxides.	Do not write outside the box
03.1	Give an equation for the reaction between phosphorus and an excess of oxygen. [1 mark]	
03.2	Give an equation for the reaction between sulfur dioxide and water. [1 mark]	
03.3	Give the displayed formula for the anion formed when sulfur trioxide reacts with water. [1 mark]	
03.4	Give an equation for the reaction of magnesium with steam. State one observation made. [2 marks] Equation	
0 3.5	Observation Give an equation to show how an excess of magnesium oxide reacts with phosphoric acid (H ₃ PO ₄). [1 mark]	
		6

		Do not write
0 4	Nitrogen dioxide decomposes at a high temperature.	box
	$2 \operatorname{NO}_2(g) \rightleftharpoons 2 \operatorname{NO}(g) + \operatorname{O}_2(g) \qquad \Delta H = +113 \text{ kJ mol}^{-1}$	
0 4.1	A 0.317 mol sample of nitrogen dioxide is placed in a sealed flask and heated at a constant temperature until equilibrium is reached.	
	At equilibrium, the flask contains 0.120 mol of oxygen.	
	Calculate the mole fraction of each substance at equilibrium. [3 marks]	
	Mole fraction of NO ₂	
	Mole fraction of NO	
	Mole fraction of O ₂	
0 4 . 2	The total pressure in the flask in Question 04.1 is 120 kPa at equilibrium.	
	Calculate the partial pressure, in kPa, of NO ₂	
	If you were unable to answer Question 04.1 you should assume that the mole fraction of NO_2 is 0.380. This is not the correct answer. [1 mark]	
	Partial pressure kPa	

IB/M/Jun23/7405/1

3 Table 1 shows the mole fractions of the three gases in a different equilibrium mixture.

 $2 \operatorname{NO}_2(g) \rightleftharpoons 2 \operatorname{NO}(g) + \operatorname{O}_2(g) \qquad \Delta H = +113 \text{ kJ mol}^{-1}$

Table 1

Gas	Mole fraction
NO ₂	0.310
NO	0.460
O ₂	0.230

For this equilibrium mixture, $K_p = 59.7$ kPa

Give an expression for K_p for this reaction.

Use your expression and the data in **Table 1** to calculate the total pressure, in kPa, in the flask.

[3 marks]

 K_{p}

4

0

Total pressure

0 8

Do not write outside the

box

04.4	The equilibrium mixture in Question 04.3 is compressed into a smaller volume.	Do not write outside the box
	Deduce the effect, if any, of this change on the equilibrium yield of oxygen and on the value of $K_{\rm p}$	
	[2 marks]	
	Effect on yield of oxygen	
	Effect on K _p	
04.5	The equilibrium mixture in Question 04.3 is allowed to reach equilibrium at a lower temperature.	
	Explain why the equilibrium yield of oxygen decreases. [2 marks]	
		11
	Turn over for the next question	
	Turn over for the next question	
	Turn over ►	

0 5	This question is about metal chlorides.		Do not wi outside ti box
0 5.1	Table 2 shows some enthalpy change data		
	Tab	le 2	
		Enthalpy change / kJ mol ⁻¹	
	$Ca^{2+}(g) \rightarrow Ca^{2+}(aq)$	-1650	
	Cl⁻(g) → Cl⁻(aq)	-364	
	$Ca^{2*}(g) \ + \ 2 Cl^-(g) \ \rightarrow \ CaCl_2(s)$	-2237	
	Use the data in Table 2 to calculate the mo calcium chloride dissolves in water.	lar enthalpy change when	alco]
		[2 ma	irksj
	Molor optiology obenge	k l m	ol-1
		KJ III	
0 5.2	0 5 . 2 Use your answer to Question 05.1 to deduce how the temperature changes when		
	calcium chloride dissolves in water.	· · · · · · · · · · · · · · · · · · ·	ark]
		[· · ·	
0 5 3	Explain why the enthalpy of hydration of flue	oride ions is more negative than the	
	enthalpy of hydration of chloride ions.		
		[2 ma	irksj

Turn over ►

0 5.6	Explain v first ionis	why the second ionisat ation energy of calciu	tion energy of calcium is gro m.	eater than the [1 m	ark]
0 5.7	Table 4 from Bor	shows lattice enthalpie n–Haber cycles for thr	es based on a perfect ionic ee metal chlorides. Table 4	model and lattice enthalp	bies
			Lattice enthalpy of di	issociation / kJ mol ⁻¹	
			Perfect ionic model	Born–Haber cycle	
	Cal	cium chloride	2223	2237	
	Pot	assium chloride	690	701	
	Silv	er chloride	770	905	
	Discuss In your a • compa Born–	the values in Table 4 . nswer you should are the three values ba are the values based o Haber cycle for each o	used on a perfect ionic mod n a perfect ionic model to t compound.	el he values from a	*****

Do not write outside the box

		Do not write
0 6	The concentration of dilute hydrochloric acid can be found by titration using a standard solution of barium hydroxide.	box
0 6.1	Calculate the mass, in g, of solid barium hydroxide (M_r = 171.3) needed to prepare	
	250 cm ³ of 0.100 mol dm ⁻³ barium hydroxide solution. [1 mark]	
	Massg	
0 6 . 2	The mass of barium hydroxide from Question 06.1 is dissolved in a beaker containing 150 cm ³ of distilled water	
	Describe how this solution is used to make 250 cm^3 of the	
	$0.100 \text{ mol dm}^{-3}$ barium hydroxide solution.	
	[3 marks]	
	Before the first titration, the 25 cm ³ ninette is rinsed with a small volume of the	
	$0.100 \text{ mol dm}^{-3}$ barium hydroxide solution.	
	State why it is good practice to rinse the pipette in this way.	
	[1 mark]	

٦

0 6.4	Hydrochloric acid is added to the burette using a funnel.
	State why it is good practice to remove the funnel from the burette before the titration.
0 6 . 5	In a different experiment, 0.952 g of solid barium hydroxide is used to make 250 cm ³ of standard barium hydroxide solution.
	25.0 cm ³ of this barium hydroxide solution reacts with exactly 24.50 cm ³ of hydrochloric acid.
	Calculate the concentration of the hydrochloric acid.
	Concentration mol dm ⁻³
06.6	The uncertainty in the 25.0 cm ³ of solution from the pipette is ± 0.05 cm ³
	The total uncertainty in the 24.50 cm^3 of solution from the burette is ±0.15 cm^3
	Calculate the total percentage error in using the pipette and burette.
	Percentage error

10

07	This question is about complexes containing the aluminium ion. Give the electron configuration of the Al ³⁺ ion. [1 mark]
07.2	When anhydrous aluminium sulfate, $Al_2(SO_4)_3$, is added to water a solution forms that contains the complex aluminium ion, $[Al(H_2O)_6]^{3+}$ Give the equation for the reaction. [1 mark]
07.3	Explain why the solution containing [Al(H ₂ O) ₆] ³⁺ is acidic. [2 marks]
07.4	State why the concentration of aluminium sulfate solution can not be determined by colorimetry. [1 mark]

07.5	An excess of aqueous ammonia is added to a solution containing [Al(H ₂ O) ₆] ³⁺ Give an ionic equation for the reaction and state one observation. [2 marks] Equation	Do not write outside the box
	Observation	
0 7.6	An excess of dilute sulfuric acid is added to the products of the reaction in Question 07.5	
	Identify the aluminium species produced. [1 mark]	
0 7.7	Figure 3 shows the structure of the EDTA ⁴⁻ ion.	
	Figure 3	
	$ \begin{array}{c} $	
	Atoms of two different elements in EDTA ^{4–} can form co-ordinate bonds with an aluminium ion.	
	On Figure 3 , draw circles around the atoms of two different elements that would link to an aluminium ion by a co-ordinate bond. [2 marks]	

0	7		8	Hvdrated aluminium sulfate	. Al ₂ (SO ₄) ₃ .xH ₂ C), is soluble in water
•		-	•	Tryulated aluminum sunate	, 712(004)3.71120	$^{\prime}$, is soluble if we

The relative formula mass and value of x can be found from a titration experiment.

Aqueous $[Al(H_2O)_6]^{3+}$ ions react to form a stable complex when treated with an excess of EDTA⁴⁻ ions.

The excess of EDTA^{4–} ions is determined by titration with ZnSO₄ solution.

Method

- Dissolve 1.036 g of Al₂(SO₄)₃.xH₂O in distilled water and make up to 250 cm³
- Add 25.0 cm³ of this solution to 50.0 cm³ of a solution containing EDTA^{4–} ions of concentration 0.0100 mol dm⁻³
- Determine the excess of EDTA⁴⁻ ions by titrating with ZnSO₄ solution in the presence of an indicator.

The excess of EDTA⁴⁻ ions requires 18.00 cm³ of 0.0105 mol dm⁻³ ZnSO₄ solution to react completely.

The equations for the reactions are

 $[Al(H_2O)_6]^{3+} + EDTA^{4-} \rightarrow [AlEDTA]^- + 6H_2O$

 $[Zn(H_2O)_6]^{2+} \ + \ EDTA^{4-} \ \rightarrow \ [ZnEDTA]^{2-} \ + \ 6 \ H_2O$

For $Al_2(SO_4)_3$ $M_r = 342.3$

Use the information given to calculate the M_r of Al₂(SO₄)₃.xH₂O

Calculate *x* Give your answer as an integer.

[7 marks]

Do not write outside the

box

Turn over ►

0 8	This question is about fuel cells.	Do not writ outside the box
	In a methanol-oxygen fuel cell, the overall reaction is	
	CH ₃ OH(I) + $1\frac{1}{2}$ O ₂ (g) → CO ₂ (g) + 2H ₂ O(I) EMF = +1.20 V	
08.1	At the positive electrode, oxygen reacts with hydrogen ions to form water.	
	Give a half-equation for this reaction. [1 mark]	
08.2	At the negative electrode, methanol reacts with water to produce carbon dioxide and hydrogen ions.	
	Give a half-equation for this reaction. [1 mark]	
0 8.3	The standard electrode potential for the CO_2 / CH_3OH electrode is +0.03 V Calculate the standard electrode potential for the O_2 / H_2O electrode. [1 mark]	
08.4	State why a fuel cell does not need to be electrically recharged. [1 mark]	
08.5	Suggest one advantage of using methanol, rather than hydrogen, in a fuel cell for use in cars. [1 mark]	
		5

Do not write outside the box 09 This is a question about time of flight (TOF) mass spectrometry. 0 9 1 Give the equation, including state symbols, for the formation of Sr⁺ ions from Sr atoms by electron impact. [1 mark] 09 2 A sample of strontium is analysed by TOF mass spectrometry. The sample is ionised using electron impact. The ions are accelerated to have a kinetic energy (KE) of 7.02×10^{-20} J An ion takes 9.47×10^{-4} s to travel along a 95.0 cm flight tube. $KE = \frac{1}{2}mv^2$ where m = mass (kg) and v = speed (m s⁻¹) Use the information given to deduce the mass number of this ion. The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$ [5 marks] Mass number

09.3	Explain how the ions are detected in the TOF mass spectrometer.	Do not write outside the box
	State how the relative abundance of the ions is determined. [2 marks]	
	How ions are detected	
	How relative abundance is determined	
09.4	A sample of strontium contains three isotopes, ⁸⁶ Sr, ⁸⁷ Sr and ⁸⁸ Sr 82% of the sample is ⁸⁸ Sr The other isotopes are in a 1:2 ratio of ⁸⁶ Sr : ⁸⁷ Sr	
	Calculate the percentage abundance of ⁸⁷ Sr in this sample.	
	Use your answer to deduce the relative atomic mass (A_r) of the sample. Give your answer to 1 decimal place.	
	[3 marks]	
	Abundance of ⁸⁷ Sr%	
	<i>A</i> _r	
09.5	Electrospray ionisation is used instead of electron impact for the ionisation of a protein in a mass spectrometry experiment.	
	Suggest why. [1 mark]	

1 0	This	question is about weak ac	ids.			Do not write outside the box
10.1	Table	e 5 shows the pH ranges o	of some indicators.			
			Table 5			
		Indicator		pH range		
		Bromocresol green		3.8 - 5.4		
		Bromothymol blue		6.0 - 7.6		
		Thymol blue		8.0 - 9.6		
	Ident and s	ify the indicator that is mos sodium hydroxide.	st suitable for use ir	n a titration between p	ropanoic acid [1 mark]	
10.2	Give (CH₃(<i>K</i> a	the expression for the acio CH₂COOH).	dissociation const	ant (<i>K</i> ª) for propanoic	acid [1 mark]	
10.3	Calcu Give For p	ulate the pH of a 0.100 mol your answer to 2 decimal ropanoic acid, p $K_a = 4.87$	l dm ⁻³ propanoic ac places.	id solution.		
	· - · F	· · · · · · · · · · · · · · · · · · ·			[4 marks]	
			pł	۹		

		Do not write outside the
1 0].[4]	For butanoic acid, $K_a = 1.51 \times 10^{-5} \text{ mol dm}^{-3}$	XOQ
	20.0 cm ³ of 0.100 mol dm ⁻³ sodium hydroxide solution are added to 25.0 cm^3 of 0.100 mol dm ⁻³ butanoic acid solution.	
	Calculate the pH of the solution formed.	
	pH	
1 0.5	A student plans to titrate butanoic acid solution with a solution of ethylamine.	
	Explain why this titration could not be done using an indicator.	
	[2 marks]	
		13
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 AQA and its licensors. All rights reserved.

