GCSE

MATHEMATICS

8300/3H
Higher Tier Paper 3 Calculator
Mark scheme
June 2023
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]Copyright © 2023 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $a \leqslant$ value $<b$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
$\mathbf{1}$	7	B1	

Q	Answer	Mark	Comments	
2	$\frac{15}{8}$ or $1 \frac{7}{8}$	B1	oe fraction eg $\frac{1875}{1000}$	
	Additional Guidance			
	Ignore attempts to simplify after correct answer seen			
	Do not allow fractions with decimal numerators or denominators eg $\frac{18.75}{10}$			B0

Q	Answer	Mark	Comments	
3	$5 x-3 x$ or $2 x$ or $3 x-5 x$ or $-2 x$ or 19-11 or 8 or $11-19$ or -8	M1		
	4	A1		
	Additional Guidance			
	Answer 4 with no working or no incorrect working			M1A1
	Embedded answer eg 5 $\times 4+11=3 \times 4+19$			M1A0

Q	Answer	Mark	Comments
4	4.5×5000 or 22500 or $5000 \div 100$ or 50 or $4.5 \div 100$ or 0.045	M1	
	225		

Q	Answer	Mark	Comments	
6	No ticked and correct reason or correct evaluation of the surface areas for any numerical or algebraic values or correct ratio of the surface areas	B2	eg 2 faces are hidden B1 No ticked	
	Additional Guidance			
	Ignore irrelevant reasons or evaluations alongside a correct reason or evaluation, unless contradictory			
	"No" may be implied by a correct reason			
	Accept reasoning that uses A as a cube			
	No ticked and A has 6, B has 10 (condone sides for faces) A has 3, B has 5 A has 6 sides, on B each cube only has 5 Ratio is $3: 5$ (accept equivalent ratios) The bottom and the top are missing (or covered) When they are put together you lose two faces You wouldn't count two sides (condone sides for faces) Some of the faces are covered You cannot see one side because they are stacked together One face covered Part of the area of A is covered where it joins B Both touching sides			B2
	Yes ticked or Cannot tell ticked			B0

Q	Answer	Mark	Comments	
7(b)	Plots at least three points correctly	M1	correct or ft their table in (a) $\pm \frac{1}{2}$ small square points may be implied by graph passing through them	
	Correct graph drawn through the five correct points	A1	$\pm \frac{1}{2} \mathrm{sn}$ smooth	
	Additional Guidance			
	Correct graph drawn without plotting the correct points			M1A1
	Ignore any extra points plotted			
	Ignore any part of graph drawn for $x<-3$ or $x>1$			
	Ruled straight lines			A0

Q	Answer	Mark	Comments
8	Alternative method 1		
	$2450 \div(2+5)$ or $2450 \div 7$ or 350	M1	oe
	their 350×5 or 1750 or their 350×2 or 700 or their $350 \div 4$ or $87.5(0)$	M1dep	oe $2450 \times \frac{5}{7}$ is M2 $2450 \times \frac{2}{7}$ is M2 $2450 \div 28$ is M 2
	their $1750 \div 4$ or (2450 - their 700) $\div 4$ or their $87.5(0) \times 5$ or 437.5(0)	M1dep	oe dep on M2 $350 \times \frac{5}{4} \text { is M3 }$
	437.5(0) and Yes	A1	accept 437.5(0) > 430
	Alternative method 2		
	$2450 \div 4$ or 612.5(0)	M1	oe
	their 612.5(0) $\div(2+5)$ or their $612.5(0) \div 7$ or 87.5(0)	M1dep	$\begin{aligned} & \text { oe } \\ & 2450 \div 28 \text { is } \mathrm{M} 2 \end{aligned}$
	```their \(87.5(0) \times 5\) or their 612.5(0) - their 87.5(0) \(\times 2\) or 437.5(0)```	M1dep	oe dep on M2 $612.5(0) \times \frac{5}{7}$ is M3
	437.5(0) and Yes	A1	accept 437.5(0) > 430

Mark scheme and Additional Guidance continue on the next page




Q	Answer	Mark	Comments	
11(a)	8 or 10	M1	8 may be implied by $2^{2}$ or 4	
	8 and 10 and $\frac{1}{40} \text { or } 0.025$	A1	8 may be implied by $2^{2}$ or 4 accept 0.03 with $\frac{1}{40}$ or 0.025 seen	
	Additional Guidance			
	Do not allow exact calculations for M1A1 eg $4.113=4$ and $10.21=10$ and $\frac{1}{40}$			M1A0
	$\frac{1}{40}$ or 0.025 with 8 or 10 seen (8 may be implied by $2^{2}$ or 4 )			M1A0
	$\frac{1}{40}$ or 0.025 without 8 or 10 seen ( 8 may be implied by $2^{2}$ or 4)			MOAO


Q	Answer	Mark	Comments	
11(b)	Valid explanation	B1	eg both numbers have been rounded down	
	Additional Guidance			
	Ignore irrelevant reasons alongside a correct reason, unless contradictory			
	Ignore a calculation using exact values alongside a correct reason eg 0.025 is greater than $0.0238 \ldots$ and both numbers rounded down			B1
	0.025 is greater than $0.0238 \ldots$			B0
	The denominator is sm			B1
	The denominator usin	s is big		B1
	(Decimals) rounded dowr			B1
	Because 8.34 is more	21 is m	than 10	B1
	One is divided by less	re)		B1
	Estimating rounds the	which m	kes the denominator less	B1
	Estimating rounds the	which m	kes it less	B0
	Because it rounds up			B0
	Because she rounded each number to one significant figure			B0
	The numbers get rounded up so more than the exact value			B0
	Rounded up when estimating			B0
	Removing the decimals makes the number bigger			B0


Q	Answer	Mark		Comme
12(a)	Ben   and   valid reason	B1	eg spun the mo	ost times
	Additional Guidance			
	Do not accept an incorrect reason alongside a correct response			
	Do not accept reasons which refer to the probability increasing			
	Ignore reasons that refer to results being more accurate			


Q	Answer	Mark	Comments	
12(b)	Valid reason	B1	eg 14.8 is not a whole number	
	Additional Guidance			
	Do not accept an incorrect reason alongside a correct response			
	$0.185 \times 80$ is not a whole			B1
	Number of spins would b			B1
	Number of spins must be	ber		B1
	Cannot land on the spinn			B1
	Have to spin 14.8 times			B0
	$0.185 \times 80=14.8$			B0
	14.8			B0
	It is a decimal			B0
	Must be a whole number			B0


Q	Answer	Mark	Comments
$\mathbf{1 2 ( c )}$	$125 \times 0.32$ or 40   or   $1-0.32$ or 0.68	M1	oe
	85	A1	



Q	Answer	Mark	Comments	
14	$5186 \div 0.2$ or $5186 \times 5$ or 25930	M1	oe	
	38500	A1		
	(their $38500-9880$ ) $\times 0.1325$ or $28620 \times 0.1325$	M1	their 38500 must be $>9880$ full method to calculate National Insurance	
	3792(.15)	A1ft	ft their 38500, which must be $>9880$	
	Additional Guidance			
	Accept final answer rounded or truncated to the nearest pound if a more accurate value is seen in working			
	Do not accept ' $13.25 \%$ of 28620 ' or $13.25 \% \times 28620$ for M mark unless accompanied by a correct method or value			
	$(25930-9880) \times 0.1325=2126.62$ or 2126.63			M1A0M1A1ft
	$25930 \times 0.1325$ or 3435.72 or 3435.73			M1A0M0AOft


Q	Answer	Mark	Comments
15(a)	$20 \times 0.8$ or 16 or $20 \times 1.8$ or 36 or $40 \times 1.2$ or 48 or $40 \times 0.7$ or 28 or $60 \times 0.4$ or 24	M1	one correct area calculation or frequency value   may be on diagram
	$\begin{aligned} & 20 \times 0.8+20 \times 1.8+40 \times 1.2+ \\ & 40 \times 0.7+60 \times 0.4 \end{aligned}$   or $16+36+48+28+24$ or 152	M1dep	allow 1 error or 1 omission or 1 misread of a frequency density value
	28	A1	



Q	Answer	Mark	Comments	
16	Alternative method 1 - using Pythagoras' theorem or 3, 4, 5 triangle			
	$16 \div 4 \times 5 \text { or } 20(\mathrm{~cm})$   or identifies triangle as $3,4,5$	M1	oe length of $c$ may be on diagram	
	$\sqrt{(\text { their } 20)^{2}-16^{2}}$ or $\sqrt{400-256}$   or $\sqrt{144}$   or $4 \times 3$	M1dep		
	12 (cm)	A1	length of $b$ may be on diagram	
	96	A1ft	ft $\frac{1}{2} \times 16 \times$ their 12 with	2 awarded
	Alternative method 2 - using trigonometry and $1 / 2 a b \sin C$ formula			
	$16 \div 4 \times 5$ or 20 (cm)	M1	oe length of $c$ may be on diagram	
	$\cos ^{-1}\left(\frac{16}{20}\right)$ or $36.8(\ldots)$ or 36.9	M1dep	angle between sides $a$ and $c$	
	$\frac{1}{2} \times 16 \times 20 \times \sin (\text { their } 36.8(\ldots))$	M1dep	dep on M2	
	96	A1		
	Additional Guidance			
	$\frac{1}{2} \times 16 \times 12 \times \sin 90$			M1M1M1


Q	Answer	Mark	Comments
17	Alternative method 1 - multiplies through by 10 or common denominator of 10		
	$5(x+8)+2(9-x)$   or $5 x+40+18-2 x$	M1	oe   numerator on the left-hand side if written as a fraction   allow one error or omission in the expansion if brackets not seen eg $5 x+18-2 x$
	$3 x+58$	A1	may be implied by eg $3 x+18=0$ or $3 x=-18$
	their $(3 x+58)=4 \times($ their 10$)$   or their $(3 x+58)=40$   or $3 x+18=0$   or $3 x=-18$	M1	oe   allow an unsimplified expression for their $(3 x+58)$   equation may be implied by answer
	-6	A1ft	ft M1A0M1
	Alternative method 2 - collects terms with fractions		
	$\frac{x}{2}+4+\frac{9}{5}-\frac{x}{5}$	M1	oe eg $0.5 x+4+1.8-0.2 x$ allow one error
	$\frac{3}{10} x+\frac{29}{5}$	A1	oe eg $0.3 x+5.8$
	$\begin{aligned} & \frac{3}{10} x=\frac{20}{5}-\frac{29}{5} \\ & \text { or } \frac{3}{10} x=-\frac{9}{5} \end{aligned}$	M1	oe eg $0.3 x=-1.8$   terms must be collected
	-6	A1ft	ft M1A0M1

Additional Guidance is on the next page

$\begin{gathered} 17 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Accept decimal answers for follow through correct to 1 dp or better	
	Apply the principles of alt 1 for any use of other common denominators eg common denominator of 20 (or multiplication through by 20) $\begin{aligned} & 10(x+8)+4(9-x)=6 x+116 \\ & 6 x+116=80 \quad x=-6 \end{aligned}$	M1A1   M1A1
	An incorrect simplification of $5 x+40+18-2 x$ may still gain the third and fourth marks   eg $5 x+40+18-2 x=3 x+68$ followed by $3 x+68=40$ and $x=-\frac{28}{3}$ eg $5 x+40+18-2 x=2 x+68$ followed by $2 x+68=40$ and $x=-14$	M1A0M1   A1ft   M1A0M1   A1ft
	An incorrect denominator may still gain the third and fourth marks $\frac{5 x+40+18-2 x}{7}$ followed by $5 x+40+18-2 x=28$ and $x=-10$	M1A0M1   A1ft
	Denominator not processed $3 x+58=4$ followed by $3 x=-54$ and $x=-18$	M1A1M0A0
	$(x+8)+(9-x)=40$	M0A0M1A0
	Two errors in the expansion but with brackets seen may go on to get the third and fourth marks $5(x+8)+2(9-x)=5 x+8+18-x$	1st M1A0
	Two errors in the expansion and no brackets seen, no follow through allowed   $5 x+8+18-x$ followed by $4 x+26=40$ and $x=\frac{14}{4}$	M0A0M1A0


Q	Answer	Mark	Comments
18(a)	$(2 x+4)^{2}+6(2 x+4)$	M1	may be seen in a grid
	$\begin{aligned} & 4 x^{2}+8 x+8 x+16+12 x+24 \\ & \text { or } 4 x^{2}+16 x+16+12 x+24 \end{aligned}$	M1dep	fully expanded expression with terms summed   allow one omission or one arithmetic error
	$\begin{aligned} & 4 x^{2}+8 x+8 x+16+12 x+24 \\ & \text { or } 4 x^{2}+16 x+16+12 x+24 \\ & \text { and } \\ & 4 x^{2}+28 x+40 \end{aligned}$	A1	
	Additional Guidance		
	$4 x^{2}+16+12 x+24$ is two err		


Q	Answer	Mark	Comments	
18(b)	$4 x^{2}+28 x+45(=0)$	M1	must be correct	
	$(2 x+5)(2 x+9)(=0)$   or $(2 x+7)^{2}-49+45(=0)$   or $\frac{-28 \pm \sqrt{28^{2}-4 \times 4 \times 45}}{2 \times 4}$   or $\frac{-28 \pm \sqrt{64}}{8}$ or $\frac{-28 \pm 8}{8}$ or $\frac{-7 \pm \sqrt{4}}{2}$	M1dep	oe implies first M1	
	$(x=)-2.5$ and $(x=)-4.5$	A1	oe fraction or decimal $\begin{aligned} & \text { SC2 }(x=)[-1.63,-1.629 \\ & (x=)[-5.371,-5.37] \end{aligned}$	
	Additional Guidance			
	SC2 from using $4 x^{2}+28 x+35(=0)$			
	Trial and improvement with both answers correct and chosen from any list			M1M1A1
	Trial and improvement with one answer correct			MOMOAO





Q	Answer	Mark	Comments
21	$72(-) 6$ or 66 or $63(-) 6$ or 57 or $45(+) 21$ or 66 or $36(+) 21$ or 57 or $56(+) 10$ or 66 or $49(+) 8$ or 57	M1	large rectangle subtract missing rectangle, implied by volumes of 864 and 72   splits side elevation vertically, implied by volumes of 540 and 252   splits side elevation horizontally, implied by volumes of 672 and 120   oe   may be on diagram
	792 or 165	A1	
	Maximum 792 and Minimum 165	A1	



Q	Answer	Mark	Com	
23(a)	$35^{2}+65^{2}-2 \times 35 \times 65 \times \cos 100$	M1	oe valid trigonometric must be correct	
	$\begin{aligned} & \sqrt{35^{2}+65^{2}-2 \times 35 \times 65 \times \cos 100} \\ & =78.9(\ldots) \end{aligned}$   or $\sqrt{6240 .(0992 \ldots)}=78.9(\ldots)$	A1	$C A=78.99429858$	
	Additional Guidance			
	Using sine rule with $C A=79$ to obtain $A B$ or $B C$			MOAO


Q	Answer	Mark	Comments
23(b)	Alternative method 1 - sine rule to find $A C B$		
	$\frac{\sin A C B}{35}=\frac{\sin 100}{79}$	M1	$\begin{aligned} & \text { oe } \\ & 79 \text { may be } 78.9(\ldots) \end{aligned}$
	$\begin{aligned} & \sin A C B=35 \times \frac{\sin 100}{79} \\ & \text { or } \sin A C B=35 \times 0.0124 \ldots \\ & \text { or } \sin A C B=0.436 \ldots \end{aligned}$	M1dep	oe
	$A C B=[25.8,26]$	A1	
	234.(...)	A1ft	ft 360-100- their ACB with M2 scored
	Alternative method 2 - cosine rule to find $A C B$		
	$\begin{aligned} & 35^{2}=79^{2}+65^{2}-2 \times 79 \times 65 \times \cos \\ & A C B \end{aligned}$	M1	oe   79 may be 78.9(...)
	$\begin{aligned} & \cos A C B=\frac{79^{2}+65^{2}-35^{2}}{2 \times 79 \times 65} \\ & \text { or } \cos A C B=\frac{9241}{10270} \\ & \text { or } \cos A C B=0.899 \ldots \end{aligned}$	M1dep	
	$A C B=[25.8,26]$	A1	
	234.(...)	A1ft	ft 360-100-their ACB with M2 scored

Mark scheme and Additional Guidance continue on the next page

23(b) cont	Alternative method $\mathbf{3} \mathbf{-}$ sine rule to find BAC			
	$\frac{\sin B A C}{65}=\frac{\sin 100}{79}$	M1	oe 79 may be 78.9(...)	
	$\begin{aligned} & \sin B A C=65 \times \frac{\sin 100}{79} \\ & \text { or } \sin B A C=65 \times 0.0124 \ldots \\ & \text { or } \sin B A C=0.81(0 \ldots) \end{aligned}$	M1dep	oe	
	$B A C=[54.1,54.3]$	A1		
	234.(...)	A1ft	ft their $B A C+180$ with M2 scored	
	Alternative method 4 - cosine rule to find BAC			
	$65^{2}=79^{2}+35^{2}-2 \times 79 \times 35 \times \cos$   BAC	M1	oe 79 may be 78.9(...)	
	$\begin{aligned} & \cos B A C=\frac{79^{2}+35^{2}-65^{2}}{2 \times 79 \times 35} \\ & \text { or } \cos B A C=\frac{3241}{5530} \\ & \text { or } \cos B A C=0.586 \ldots \end{aligned}$	M1dep		
	$B A C=[54.1,54.3]$	A1		
	234.(...)	A1ft	ft their $B A C+180$ with M2 scored	
	Additional Guidance			
	$C A=79$ is given in part (a) or 78.9(...) can be used. There is no follow through from part (a).			
	Accept any notation for the angle eg $\sin x$ or $\sin C$ for angle $A C B$			
	Correct work for part (b) seen in part (a) may be awarded method marks in part (b)			


[^0]:    Copyright information
    AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

