GCSE

MATHEMATICS

8300/2H
Higher Tier Paper 2 Calculator
Mark scheme
June 2023
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
f

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $a \leqslant$ value $<b$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer ${ }^{\text {a }}$ Mark		Comments	
1	$\frac{30}{12}$ or 2.5	B1	oe fraction, mixed nu eg $\frac{5}{2}$ or $2 \frac{1}{2}$	cimal
	Additional Guidance			
	Ignore simplification or conversion attempt after correct answer seen eg $\frac{30}{12}$ in working with 2.6 on answer line			B1
	$30 \div 12$ with no further correct work			B0

Q	Answer	Mark	Comments	
$\mathbf{2}$	28		B1	
	Additional Guidance			

Q	Answer	Mark	Comments	
3	$\frac{7}{4} \text { or } 1.75$	B1	oe fraction, mixed number or decimal eg $1 \frac{3}{4}$	
	Additional Guidance			
	Ignore conversion attem $\text { eg } \frac{7}{4}=1.8$	answ		B1
	Condone answer $\frac{1}{4 / 7}$			B1
	Condone answer $\left(\frac{4}{7}\right)^{-1}$	ackets		B1
	Do not allow $1 \div \frac{4}{7}$			B0
	$\frac{-7}{-4}$			B1

Q	Answer			Mark	Comments		
	45×8 or 360			M1	oe number of $2 p$ coins may be embedded		
	$45 \times 8 \times 2$ or 360×2 or 720 or $7.2(0)$			M1dep	oe value of $2 p$ coins implied by 1170 or $11.7(0)$		
	$\begin{aligned} & 17.7(0)-\text { their } 7.2(0)-45 \times 0.1(0) \\ & \text { or } \\ & 1770-\text { their } 720-45 \times 10 \\ & \text { or } \\ & 6(.00) \text { or } 600 \end{aligned}$			M1dep	oe value of 5 p coins implied by 7.2 : 6 oe ratio not in simplest form or $6: 7.2$ oe ratio		
	6:5			A1	accept $1.2: 1$ or $\frac{6}{5}: 1$ or $1 \frac{1}{5}: 1$ or $1: 0.83(\ldots)$ or $1: \frac{5}{6}$		
5	Additional Guidance						
	Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts						
	Allow working in pence or pounds throughout						
	Must work consistently in pence or pounds for the third mark (or recover)						
	Ignore units in the ratio eg $6 p: 5 p$ or $£ 1.20: £ 1$						M3A1
	720 may be seen in a ratio with the value of the 10 p coins eg $720: 450$ or $7.2: 4.5$						M2
	600 may be seen in a ratio with the value of the 10p coins eg 600:450 or $6: 4.5$						M3
	For information: Coin $10 p$ $2 p$ coin						
	For information:	Number	45	360	120		
		Value	$£ 4.50$	$£ 7.20$	£6.00		

Q	Answer	Mark	Commen	
6(a)	$360 \div 8$ or 135 seen	M1	oe eg $45 \times 8=360$ or $180-\frac{(8-2) \times 180}{8}$ may be on diagram	
	45	A1		
	Additional Guidance			
	M1 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts			
	45 seen but not chosen as answer, even if linked to the wrong angle			M1A0

Q	Answer	Mark	Comments
$\mathbf{6 (b)}$	It is less than the answer to part (a)	B1	

Q	Answer				Mark	Comments			
7(a)	All values correct				B2	B1 1 or 2 rows correct			
	Additional Guidance								
		1	2	3		4	5	6	
	$2 x$	2	4	6		8	10	12	
	$3 x$	3	6	9		12	15	18	
	x^{2}	1	4	9		16	25	36	

Q	Answer	Mark	Comments	
7(b)	$\frac{8}{18} \text { or } \frac{4}{9}$ or $0.44(4 \ldots)$ or $44(.4 \ldots) \%$	B1ft	oe fraction, decimal or perc ft their table with $\geqslant 12$ valu must be using 18 for the to possible scores	mber of
	Additional Guidance			
	Ignore simplification or conversion attempt (not ratio) after correct probability seen			
	Ratio answer eg $8: 18$, even alongside a correct probability is B0			
	ft decimals or percentages must be correct to the same accuracy as in the scheme eg 10 winning values in their table $\frac{10}{18}$ or $0.55(5 \ldots)$ or 0.56 or 0.556 or $55(.5 \ldots) \%$ or 56% or 55.6%			B1ft

Q	Answer	Mark		
8	$a=8$ and $b=6$	B2	B1 a or $2 b=$ SC1	$a=8$
	Additional Guidance			
	Ignore working if B 2 or B 1 or SC1 seen			
	$(a-3) x^{2}=5 x^{2}$ with no further correct work			B0
	For B1 do not allow embedded values eg $2 \times 6=12$			B0

Q	Answer	Mark	Comments	
9	Identifies $(6,3)$ or $(7,9)$ or $(-4,3)$ or $(-3,9)$	M1	may be seen on the grid mark intention on diagram eg parallelogram drawn with one of the vertices at $(6,3)$ or $(6,3)$ plotted	
	Identifies $(6,3)$ and $(7,9)$ or identifies $(-4,3)$ and $(-3,9)$	M1dep	may be seen on the grid mark intention on diagram eg parallelogram drawn with two of the vertices at $(6,3)$ and $(7,9)$ or $(6,3)$ and $(7,9)$ plotted	
	Both diagonals drawn for one of the correct parallelograms or centre of one of the correct parallelograms identified or $(4,6) \text { or }(-1,6)$	M1dep	mark intention on diagram M3 may be implied eg $\left(\frac{1+7}{2}, \frac{9+3}{2}\right)$ or $\left(\frac{-4+2}{2}, \frac{9+3}{2}\right)$	
	$(4,6)$ and $(-1,6)$	A1		
	Additional Guidance			
	Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts			
	Both answers correct (ignore working)			M3A1
	One answer correct (ignore working)			MЗАО
	For first 2 marks condone correct points plotted even if labelled incorrectly			
	Up to M2 can be awarded for coordinates given as answers			
	Arc centre A radius 5 cm passing through $(6,3)$ and/or $(-4,3)$ is not sufficient to award M1 etc			

Q	Answer	Mark	Comments	
10	$\binom{4}{-3}$	B2	$\begin{aligned} & \mathrm{B} 1\binom{4}{\ldots} \text { or }\binom{\ldots}{-3} \\ & \mathrm{SC} 1\binom{-4}{3} \end{aligned}$	
	Additional Guidance			
	$(4,-3)$ or $\binom{-3}{4}$			B0
	Ignore words if a vector is also seen eg1 Reflection $\binom{4}{-3}$ eg2 4 right 3 up and $\binom{4}{3}$ eg3 4 right 3 down eg4 Rotate 4 left and 3 up and $\binom{-4}{3}$			B2
				B1
				B0
				SC1
	Condone any type of brackets			
	Condone missing brackets for B 2 or B 1 or SC 1 but must have two numbers in a column			
	Condone 'fraction line' for B2 or B1 or SC1 but must have two numbers in a column			
	$\binom{4 x}{-3 y}$ or $\binom{x 4}{-y 3}$ or $\binom{x+4}{y-3}$ or $\binom{4$ right }{3 down } or $\binom{4 \mathrm{r}}{3 \mathrm{~d}}$ or $\binom{4 \rightarrow}{3 \downarrow}$			B0

Q	Answer	Mark	Comments
11	Alternative method 1 Compares 70\% of volume of hemisphere with volume of water		
	$\begin{aligned} & \frac{4}{3} \times \pi \times 12^{3} \text { or } 2304 \pi \\ & \text { or }[7216,7239.2] \\ & \text { or } \\ & \frac{2}{3} \times \pi \times 12^{3} \text { or } 1152 \pi \\ & \text { or }[3581,3638] \end{aligned}$	M1	$\text { oe eg } \frac{4}{3} \pi \times 1728$ allow without any multiplication signs eg $\frac{4}{3} \pi 12^{3}$
	$0.7 \times$ their 1152π or 806.4π or [2506, 2547]	M1dep	oe $0.7 \times$ their $[3581,3638]$ or $\frac{4032}{5} \pi$ must be using volume of hemisphere
	325×8 or 2600	M1	oe
	[2506, 2547] and 2600 and Yes	A1	oe
	Alternative method 2 Works out volume of water as proportion of volume of hemisphere		
	$\begin{aligned} & \frac{4}{3} \times \pi \times 12^{3} \text { or } 2304 \pi \\ & \text { or }[7216,7239.2] \\ & \text { or } \\ & \frac{2}{3} \times \pi \times 12^{3} \text { or } 1152 \pi \\ & \text { or }[3581,3638] \end{aligned}$	M1	$\text { oe eg } \frac{4}{3} \pi \times 1728$ allow without any multiplication signs eg $\frac{4}{3} \pi 12^{3}$
	325×8 or 2600	M1	oe
	their $2600 \div$ their 1152π or [0.71, 0.73]	M1dep	oe eg their $2600 \div$ their $[3581,3638$] or 72% dep on M2 must be using volume of hemisphere
	[71, 73](%25) and Yes	A1	oe eg 0.72 and 0.7 and Yes

Question 11 continues on the next page

$\begin{gathered} 11 \\ \text { cont } \end{gathered}$	Alternative method 3 Works out time to fill 70% of volume of hemisphere		
	$\begin{aligned} & \frac{4}{3} \times \pi \times 12^{3} \text { or } 2304 \pi \\ & \text { or }[7216,7239.2] \\ & \text { or } \\ & \frac{2}{3} \times \pi \times 12^{3} \text { or } 1152 \pi \\ & \text { or }[3581,3638] \end{aligned}$	M1	$\text { oe eg } \frac{4}{3} \pi \times 1728$ allow without any multiplication signs eg $\frac{4}{3} \pi 12^{3}$
	```0.7 x their 1152\pi or 806.4\pi or [2506, 2547] or their 1152\pi \div325 or [11, 11.2]```	M1dep	oe   $0.7 \times$ their $[3581,3638]$ or $\frac{4032}{5} \pi$   or   their $[3581,3638] \div 325$   must be using volume of hemisphere
	$\begin{aligned} & 0.7 \times \text { their } 1152 \pi \div 325 \\ & \text { or } 0.7 \times \text { their }[3581,3638] \div 325 \\ & \text { or }[7.7,7.84] \end{aligned}$	M1dep	oe   their [2506, 2547] $\div 325$   or $0.7 \times$ their $[11,11.2]$
	[7.7, 7.84] and Yes	A1	oe

## Question 11 continues on the next page

$\begin{gathered} 11 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts	
	$\text { Allow } 1.33(\ldots) \text { for } \frac{4}{3}$	
	$\text { Allow } 0.66(\ldots) \text { or } 0.67 \text { for } \frac{2}{3}$	
	$\pi$ may be seen as $[3.14,3.142] \quad$ eg Alt $1 \frac{2}{3} \times 3.14 \times 12^{3}$	M1
	If a number (or calculation) in terms of $\pi$ is seen but $\pi$ is subsequently omitted, treat as a miscopy for M marks   eg Alt 1   $1152 \pi$ $\begin{aligned} & 0.7 \times 1152=806.4 \\ & 325 \times 8=2600 \quad \text { Yes } \end{aligned}$	M1   M1dep   M1A0
	Yes cannot be implied by inequalities	
	Alts 1 and 2   $325 \mathrm{~cm}^{3} \times 8$ seen is M1 even if evaluated incorrectly   $325^{3} \times 8$ seen is M0 unless recovered to 2600	
	Do not allow misreads of the given formula unless recovered eg1 using $12^{2}$ instead of $12^{3}$   eg2 using $\frac{3}{4}$ instead of $\frac{4}{3}$	
	For $0.7 \times$ their $1152 \pi$, do not accept $70 \% \times$ their $1152 \pi$ unless recovered	





## Question 14(a) continues on the next page

$\begin{aligned} & \text { 14(a) } \\ & \text { cont } \end{aligned}$	Alternative method 3 Shows that a value of $x$ gives a percentage $>30 \%$			
	$\begin{aligned} & (15+10+x) \div 123 \\ & \text { where } 12 \leqslant x \leqslant 32 \end{aligned}$	M2	oe eg $(25+x) \div 123$   must see 15 and 10 or 25	
	$\begin{aligned} & (15+10+x) \div 123 \\ & \text { where } 12 \leqslant x \leqslant 32 \\ & \text { and } \\ & \text { evaluates } \\ & (15+10+x) \div 123 \times 100 \text { correctly } \end{aligned}$	A1	evaluations rounded or truncated to nearest integer or better   SC3 37 (or 36.9) and explains that a minimum of 12 of 32 people earn more than £17	
	Alternative method 4 Shows a number of employees that gives a percentage $>30 \%$			
	$0.3 \times 123$ or 36.9	M1	oe accept 36 or 37 for 36.9	
	$15+10+x \text { or } 25+x$   where $12 \leqslant x \leqslant 32$	M1dep	must see 15 and 10 or 25	
	36.9 and evaluates $15+10+x$ correctly where $12 \leqslant x \leqslant 32$	A1	accept 36 or 37 for 36.9   SC3 37 (or 36.9) and explains that a minimum of 12 of 32 people earn more than £17	
	Additional Guidance			
	Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts			
	16 may be seen by the table			
	Alt $167 \%$ needs further explanation to score A1			
	Ignore irrelevant working in an otherwise fully correct response			
	For the SC3, minimum of 12 may be implied by an explanation that $10+15+x$ is at least 37 or $25+x$ is at least 37			
	Responses involving interpolation should be escalated			




Q	Answer	Mark	Comments	
	Valid reason referring to the distribution	B1	eg 98 employees earned below £20	
	Additional Guidance			
	Less than a half earned more than £20			B1
	Over a half earned between £10 and £14			B1
	Lots earned 10 to 14			B0
	Only 25 people were over £20			B1
	25 people were over £20			B0
	Not many earned more than the mean			B0
	Most earned less than £20			B1
	Some earned less than the $m$	e earn	more	B0
	Mean is not a real amount of			B0
	Median is between $£ 10$ and $£ 14$			B1
14(d)	Median is better or mode is better			B0
	Modal class is $10 \leqslant p<14$			B1
	The mode is between $£ 10$ and $£ 14$ (condone mode as modal class)			B1
	We don't know what each person earns			B0
	Grouped data or it is only an estimate or using midpoints or data is wrong			B0
	The range is large			B0
	The data has extreme values or outliers or anomalous values			B1
	The data is (positively) skewed			B1
	The distribution is not symmetrical			B1
	The distribution is not evenly spread			B1
	Not representative			B0
	Lots of low values or high values can make the mean inaccurate			B0
	Ignore irrelevant working but do not ignore incorrect working			


Q	Answer	Mark	Comments	
15	$2 x^{3}-18 x^{2} y+5 x^{2} y-45 x y^{2}$	M1	exactly 4 terms with 3 correct terms in any order may be seen in a grid implied by $2 x^{3}-13 x^{2} y$ with one other term or $-13 x^{2} y-45 x y^{2}$ with one other term	
	$2 x^{3}-18 x^{2} y+5 x^{2} y-45 x y^{2}$   or $2 x^{3}-13 x^{2} y-45 x y^{2}$	A1	terms in any order do not allow if only seen in a grid	
	Additional Guidance			
	A correct term includes the sign (in a grid allow eg $5 x^{2} y$ for $+5 x^{2} y$ )			
	Condone four correct terms followed by incorrect simplification of $x^{2} y$ terms, otherwise do not allow further incorrect work$\begin{aligned} & \text { eg1 } 2 x^{3}-18 x^{2} y+5 x^{2} y-45 x y^{2}=2 x^{3}+13 x^{2} y-45 x y^{2} \\ & \text { eg2 } 2 x^{3}-18 x^{2} y+5 x^{2} y-45 x y^{2}=36 x^{5} y+5 x^{2} y-45 x y^{2} \end{aligned}$			M1A1   M1A0
	Allow equivalent fully simplified terms eg $5 x^{2} y$ may be seen as $5 y x^{2}$			
	For M1 allow coefficients to be incorrectly positioned eg $x^{3} 2-18 x^{2} y+y 5 x^{2}-45 x y^{2}$			M1A0
	$2 x^{3}+-18 x^{2} y+5 x^{2} y+-45 x y^{2}$ has 4 correct terms but needs further simplification to score A1			M1A0
	Terms must be processed eg do not allow $x^{2} \times 2 x$ for $2 x^{3}$			


Q	Answer	Mark	Comments	
16	$\begin{aligned} & 13=7 a-1 \\ & \text { or }(a=) 2 \end{aligned}$	M1	$\text { oe eg } \frac{13--1}{7-0}$   may be implied eg $(y=) 2 x-1$	
	$(y=) \frac{3}{5} x \ldots$   or (gradient $B=) \frac{3}{5}$	M1	oe eg (gradient $B=$ ) 0.6 allow $(y=) \frac{3 x+4}{5}$	
	gradient $A=2$   and gradient $B=\frac{3}{5}$	A1	oe eg $2>\frac{3}{5}$ condone $2 x>\frac{3}{5} x$	
	Additional Guidance			
	Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts			
	Condone incorrect $y$-intercept eg $a=2 \quad y=\frac{3}{5} x+4$ gradient $A=2 \quad$ gradient $B=\frac{3}{5}$			M1M1   A1
	It must be clear that the values 2 and $\frac{3}{5}$ are being used to answer the question to award A1   eg1 gradient $A=2$ and gradient $B=\frac{3}{5} \quad$ (no statement needed)   eg2 $a=2 \quad y=\frac{3}{5} x+\frac{4}{5}$   eg3 $y=2 x-1$ and $y=\frac{3}{5} x+\frac{4}{5} \quad 2$ is greater than $\frac{3}{5}$   eg4 $y=2 x-1$ and $y=\frac{3}{5} x+\frac{4}{5} \quad$ gradient of $A>$ gradient of $B$			M2A1   M2A0   M2A1   M2A0
	$13=7 x-1$ or $x=2$ must be recovered to award 1st M1			


Q	Answer	Mark	Comments
17	Alternative method 1 Works out $A C$ and uses it in triangle $A B C$		
	$\cos 37=\frac{A C}{4}$	M1	oe eg $\sin 53=\frac{A C}{4}$ allow [0.798, 0.8] for $\cos 37$ or $\sin 53$
	$\begin{aligned} & (A C=) 4 \times \cos 37 \\ & \text { or }(A C=)[3.19,3.2] \end{aligned}$	M1dep	oe eg ( $A C=$ ) $4 \times \sin 53$ allow [0.798, 0.8] for $\cos 37$ or $\sin 53$ may be seen on diagram
	$\begin{aligned} & \sin x=\frac{\text { their }[3.19,3.2]}{9.3} \\ & \text { or }(x=) \sin ^{-1}[0.34,0.3441] \end{aligned}$	M1dep	$\text { oe eg } \cos x=\frac{\sqrt{9.3^{2}-\text { their }[3.19,3.2]^{2}}}{9.3}$   or $(x=) 90-\cos ^{-1}[0.34,0.3441]$
	[19.87, 20.13]	A1	
	Alternative method 2 Works out angle $A D C$ and uses it in triangle $A B D$		
	(angle $A D C=$ ) $90-37$   or (angle ADC=) 53	M1	oe eg (angle $A D C=$ ) $180-90-37$ may be seen on diagram
	$\frac{\sin x}{4}=\frac{\sin (90-37)}{9.3}$	M1dep	$\text { oe eg } \frac{4}{\sin x}=\frac{9.3}{\sin 53}$
	$\begin{aligned} & (\sin x=) \frac{\sin (90-37)}{9.3} \times 4 \\ & \text { or }(x=) \sin ^{-1}[0.34,0.3441] \end{aligned}$	M1dep	oe
	[19.87, 20.13]	A1	

Question 17 continues on the next page

$\begin{gathered} 17 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts	
	Allow any unambiguous notation for angles eg allow $B$ for $x$	
	Alt 1 Allow any unambiguous notation for $A C$ eg $y$ (condone $x$ if clearly referring to $A C$ )	
	Alt 1 1st M1 must be an equation where $A C$ is the only variable eg $A C^{2}+(4 \sin 37)^{2}=4^{2}$	M1
	Alt 1 A calculation that leads to AC scores M1M1 eg $\sqrt{4^{2}-(4 \sin 37)^{2}}$	M1M1
	Alt 1 3rd M1 must have $\sin x(\operatorname{or} \cos x)$ as the subject or be a calculation that leads to $x$	
	Alt 253 only marked at angle BAC on diagram	M0


Q	Answer	Mark	Comments	
18	$x y=x+8$   or $y=1+\frac{8}{x}$	M1	oe equation with fraction eliminated or oe equation with single fraction split into two terms$\text { eg } y \times x=x+8 \text { or } y=\frac{x}{x}+\frac{8}{x}$	
	$x y-x=8$ or $x(y-1)=8$	M1dep	oe equation with $x$ terms collected eg $x-x y=-8$	
	$x=\frac{8}{y-1} \text { or } x=\frac{-8}{1-y}$	A1	oe equation with $x$ the subject$\text { eg }-\frac{8}{1-y}=x$	
	Additional Guidance			
	Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts			
	Correct answer in working with answer repeated on answer line without $x=$ eg $x=\frac{8}{y-1}$ seen in working with answer $\frac{8}{y-1}$			M1M1A1
	Do not allow incorrect simplification after correct answer seen eg $x=\frac{8}{y-1} \quad x=\frac{8}{y}-8$			M2A0
	$x y-x-8=0$ with no further correct working			M1M0


Q	Answer	Mark	Comments
19	Alternative method $1 \quad n$th term $=a n^{2}+b n+c$		
	(second differences =) 10 or $a=5$ or $5 n^{2}$	M1	second difference seen at least once and not contradicted by a different value unless recovered may be seen by the sequence
	$3-5 \times 1^{2} \text { and } 20-5 \times 2^{2}$   or -2 and 0   or $b=2$ or $2 n$	M1dep	oe subtraction of $5 n^{2}$ from any two consecutive terms   eg $47-5 \times 3^{2}$ and $84-5 \times 4^{2}$   or 2 and 4   implied by $5 n^{2}+2 n \ldots$
	$5 \times 1^{2}+2 \times 1+c=3$   or $5+2+c=3$   or   $(2 n+c$ and) $2 \times 1+c=-2$	M1dep	oe substitution of $a=5$ and $b=2$ eg $5 \times 2^{2}+2 \times 2+c=20$   or   oe use of $2 n+c$ and another term   eg $(2 n+c$ and) $2 \times 2+c=0$
	$5 n^{2}+2 n-4$	A1	terms in any order $\begin{aligned} & \mathrm{SC2} a=5 \text { and } c=-4 \\ & \mathrm{SC} 1 \quad c=-4 \end{aligned}$
	Alternative method $2 n$th term $=a n^{2}+b n+c$		
	(second differences =) 10 or $a=5$ or $5 n^{2}$	M1	second difference seen at least once and not contradicted by a different value unless recovered may be seen by the sequence
	$3 \times 5+b=17$   or $b=2 \text { or } 2 n$	M1dep	oe substitution of $a=5$ eg $5 \times 5+b=27$ implied by $5 n^{2}+2 n \ldots$
	$\begin{aligned} & 5 \times 1^{2}+2 \times 1+c=3 \\ & \text { or } 5+2+c=3 \end{aligned}$	M1dep	oe substitution of $a=5$ and $b=2$ eg $5 \times 2^{2}+2 \times 2+c=20$
	$5 n^{2}+2 n-4$	A1	terms in any order   SC2 $a=5$ and $c=-4$   SC1 $c=-4$

Question 19 continues on the next page

$\begin{gathered} 19 \\ \text { cont } \end{gathered}$	Alternative method $3 \quad n$th term $=a n^{2}+b n+c$			
	Any 3 of $\begin{aligned} & a+b+c=3 \\ & 4 a+2 b+c=20 \\ & 9 a+3 b+c=47 \\ & 16 a+4 b+c=84 \end{aligned}$	M1	oe 3 equations	
	$3 a+b=17 \text { and } 5 a+b=27$   or $a=5$ and $b=2$	M1dep	oe pair of equations in $a$ and $b$ eg $8 a+2 b=44$ and $15 a+3 b=81$ implied by $5 n^{2}+2 n \ldots$	
	$\begin{aligned} & 5 \times 1^{2}+2 \times 1+c=3 \\ & \text { or } 5+2+c=3 \end{aligned}$	M1dep	oe substitution of $a=5$ and $b=2$$\text { eg } 5 \times 2^{2}+2 \times 2+c=20$	
	$5 n^{2}+2 n-4$	A1	terms in any order$\begin{aligned} & \text { SC2 } a=5 \text { and } c=-4 \\ & \text { SC1 } c=-4 \end{aligned}$	
	Additional Guidance			
	Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts			
	Second differences $=10$ scores M1 even if used incorrectly eg 10n $\ldots$.			
	Condone $n=5 n^{2}+2 n-4$ or $5 n^{2}+2 n-4=0$			M3A1
	Condone working in a different variable eg $5 x^{2}+2 x-4$			M3A1
	The 3rd method mark cannot be implied ie $c=-4$ is only awarded M3 if the previous two method marks are seen			
	Alt 1 2nd M1 cannot be awarded for subtracting in the wrong order unless recovered			
	SC2 or SC1 can be awarded from work seen in the working lines			
	SC2 or SC1 can be implied by a quadratic answer eg1 answer $5 n^{2}+6 n-4$   eg2 answer $10 n^{2}+3 n-4$			$\begin{aligned} & \mathrm{SC} 2 \\ & \mathrm{SC} 1 \end{aligned}$


Q	Answer	Mark	Comments	
20(a)	65	B1		
	Additional Guidance			B1
	65 unambiguously linked to $x$ on diagram with answer line blank			


Q	Answer	Mark	Comments	
20(b)It is greater than the answer to part   (a)	B1			
	Additional Guidance			



Q	Answer	Mark	Comments
21	Alternative method 1		
	$560 \div 500$ or 1.12	M1	oe
	$\begin{aligned} & \sqrt[3]{\text { their } 1.12} \text { or }[1.038,1.0385] \\ & \text { or } \\ & {[3.8,3.85]} \end{aligned}$	M1dep	may be implied $\text { eg } \frac{r}{100}=[0.038,0.0385]$
	3.9	A1	
	Alternative method 2		
	Trial of the form $500 \times x^{3}$ with $1<x \leqslant 1.1$   and correct evaluation	M1	allow correct evaluation truncated or rounded to nearest integer or better allow working year by year value of $x$ used must be seen
	Two trials of the form $500 \times x^{3}$ each with $1<x \leqslant 1.1$   and   correct evaluations, one with   answer < 560 and one with   answer > 560	M1dep	allow correct evaluations truncated or rounded to nearest integer or better allow working year by year values of $x$ used must be seen
	3.9	A1	

Question 21 continues on the next page

	Additional Guidance				
$\begin{gathered} 21 \\ \text { cont } \end{gathered}$	Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts				
	1.01	515.1505	1.0385	560.0019083	
	1.02	530.604	1.039	560.8111595	
	1.03	546.3635	1.04	562.432	
	1.038	559.193436	1.05	578.8125	
			1.06	595.508	
			1.07	612.5215	
			1.08	629.856	
			1.09	647.5145	
			1.1	665.5	
	eg of accep   For 578.812	d values   allow 578, 57	$8,578.8$	$\text { , 578.812, } 578$	
	Alt 2 examp (allow interm also allow if $500 \times 1.035$ $517.5 \times 1.03$ $535.61 \times 1.03$	of working y diate values to ven to the ne $\begin{aligned} & =517.5 \\ & =535.6125 \\ & 5=554.3563 \end{aligned}$	year uncated y)	rounded to th 535.62)	
	Incorrect tria	and evaluatio	be igno		
	3.9 from inc eg 560-50	rect working $=60 \quad \sqrt[3]{60}$			MOMOAO
	Wrong answ	(eg 4) with n	ct method	seen	MOMOAO
	Apply the sc $\text { eg } 500 \times 1$	me that favo $38^{3}$ scores M	student   sing Alt		
	$\frac{560-500}{500}$	th no further	work		MOMO


Q	Answer	Mark	Comments	
22(a)	$\left(x_{2}=\right) 4.1(0 \ldots)$	B1		
	$\left(x_{3}=\right)[4.176,4.178]$ or 4.18	B1ft	ft their 4.1 (0...) rounded to at least 2 dp$\mathrm{SC} 1 x_{2}=[4.176,4.178] \text { or } 4.18$	
	Additional Guidance			
	Allow second B1 for $x_{3}=4.2$ with acceptable answer seen in working			
	$x_{2}=7.8$			B0
	$x_{3}=6.59$			B1ft
	SC1 is for using $x_{0}=4$			


Q	Answer	Mark	Comments
22(b)	$4.25<$ value $\leqslant 4.39$	B1	ignore any iteration number
	Additional Guidance		
	Ignore other values if B1 response seen		


Q	Answer	Mark	Comments
23	$\frac{3}{8}(x) \frac{2}{7} \text { or } \frac{6}{56} \text { or } \frac{3}{28}$	M1	oe fraction, decimal or percentage allow $\frac{2}{7}$ to be [0.285, 0.286] or [28.5, 28.6]\% allow $\frac{6}{56}$ to be $[0.107,0.107143]$ or [10.7, 10.7143]\% may be seen on a tree diagram allow 6 out of 56
	$\begin{aligned} & \frac{1}{7}(\times) \frac{1}{4}(\times 2) \\ & \text { or } \frac{1}{28}(\times 2) \text { or } \frac{2}{28} \text { or } \frac{1}{14} \end{aligned}$	M1	oe fraction, decimal or percentage allow $\frac{1}{7}$ to be [0.142, 0.143] or [14.2, 14.3]\% allow $\frac{1}{28}$ to be $[0.035,0.036]$ or [3.5, 3.6]\% allow $\frac{2}{28}$ to be [0.071, 0.07143] or [7.1, 7.143]\%   may be seen on a tree diagram allow 1 out of 28 or 2 out of 28
	$\frac{6}{56} \text { and } \frac{2}{28}$	A1	oe fractions, decimals or percentages allow 6 out of 56 and 2 out of 28
	Probabilities in comparable form and Option 1	A1ft	ft their $\frac{6}{56}$ and their $\frac{2}{28}$ with M2A0 correct comparisons include   6 out of 56 and 4 out of 56

Question 23 continues on the next page

$\begin{gathered} 23 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts	
	3 ways to win in Option 1 and 2 ways to win in Option 2 so Option 1	MOMOAOAO
	$\frac{3}{8} \times \frac{2}{7}=\frac{6}{56} \quad \frac{1}{7} \times \frac{1}{4}=\frac{1}{28}$   $\frac{6}{56}$ and $\frac{2}{56}$ and Option 1	M1M1   A0A1ft
	Assuming replacement can score a maximum of M0M1A0A0	
	Choosing Option 1 cannot be implied by inequalities	


Q	Answer ${ }^{\text {a }}$ Mark		Comments	
24	64.5 or 65.5   or   25 or 35	M1	allow $65.4 \dot{9}$ or $34 . \dot{9}$   implied by 4160.25 or 4290.25   or 8320.5 or 8580.5   or 625 or 1225	
	$2 \times$ their $65.5^{2}-$ their $25^{2}$   or $2 \times 4290.25-625$   or 8580.5-625	M1	their 65.5 must be $(65,66]$ their 25 must be $[20,30$ )	
	65.5 and 25 and 7955.5	A1		
	Additional Guidance			
	Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts			
	If multiple attempts are seen and one is fully correct, the correct one must be unambiguously selected (eg ticked or circled) to award A1 if the answer line is blank			
	Note that M0M1A0 is possible eg $2 \times 66^{2}-21^{2}$			M0M1A0
	Condone eg 65.50 for 65.5			


Q	Answer	Mark	Comments	
25	$\frac{(x-5)(x+2)}{(x-2)(x+2)}$ and $\frac{(x+5)(x-2)}{(x+2)(x-2)}$	M1	$(x-2)(x+2)$ or $x^{2}-2 x+2 x-4$ must be seen (expansion may be seen in a grid)   brackets in any order   if the brackets are not shown for the numerators, expansions must be correct may be seen as a single fraction	
	$x^{2}-5 x+2 x-10 \text { or } x^{2}-3 x-10$   or $x^{2}+5 x-2 x-10 \text { or } x^{2}+3 x-10$	M1	correct expansion of $(x-5)(x+2)$ or $(x+5)(x-2)$   ignore denominators   may be seen in a grid   implied by $2 x^{2}-20$ if no errors seen in expansions	
	M2 seen with no errors and $\frac{2 x^{2}-20}{x^{2}-4}$	A1	allow M2 seen with no erro and $a=2 b=20$	
	Additional Guidance			
	Missing brackets must be recovered but condone missing closing bracket at the end of a numerator or denominator$\text { eg } \frac{(x-5)(x+2)}{(x-2)(x+2)}+\frac{(x+5)(x-2)}{(x+2)(x-2}$			1st M1
	2nd M1 is awarded for four correct terms even if subsequently simplified incorrectly			
	For terms seen in a grid, signs must be correct (allow eg $2 x$ for $+2 x$ )			
	For 1st M1 allow multiplication signs			
	After M2A1 ignore incorrect values stated eg $a=2 b=-20$			
	$\frac{2 x^{2}-20}{x^{2}-4}$ may come from wrong working or incomplete working eg $\frac{(x-5)(x+2)}{(x-2)(x+2)}+\frac{(x+5)(x-2)}{(x+2)(x-2)}$$\frac{x^{2}-10+x^{2}-10}{x^{2}-4}=\frac{2 x^{2}-20}{x^{2}-4}$			M1   MOAO


Q	Answer	Mark	Comments	
26(a)	$(0,2)$	B1		
	Additional Guidance			


Q	Answer	Mark	Comments	
$\mathbf{2 6 ( b )}$	$y=-x^{2}$	B1	oe equation eg $x^{2}=-y$	
	Additional Guidance			
	$y=-1 x^{2}+0$	B1		
	$y=-\left(x^{2}\right)$	B1		
	$-x^{2}$	B0		


Q	Answer	Mark	Comments	
26(c)	Translation	B1	allow eg translate(d)	
	$\binom{-3}{0}$	B1		
	Additional Guidance			
	Do not accept a vector given as coordinates or with missing brackets or with 'fraction line'			
	Translation from (0, 0)			B1B0
	Translation horizontally by 3			B1B0
	Translate 3 to the left and 3 down			B1B0
	Reflect by $\binom{-3}{0}$			B0B1
	Giving a combined transformation is B0B0 Rotate by $\binom{-3}{0}$ and reflect in the $x$-axis			B0B0
	Ignore references to movement if vector is correct eg Move to the right by $\binom{-3}{0}$			B0B1

