

Please write clearly in	i block cap	itais.			
Centre number			Candidate numbe	r	79 390
Surname					
Surname Forename(s)					

GCSE **MATHEMATICS**

Higher Tier

Paper 3 Calculator

Monday 7 November 2022

Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- · a calculator
- mathematical instruments
- · the Formulae Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- · Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

Advice

In all calculations, show clearly how you work out your answer.

For Examin	5 66.
Pages	Mark
2-3	
4–5	
6–7	
8–9	
10-11	
12-13	
14-15	
16–17	
18–19	
20–21	
22-23	
24-25	
26-27	
28-29	
TOTAL	

MME. GCSE Revision - GCSE Maths

GCSE Maths Predicted Papers 2024

GCSE Maths
Revision Guide

GCSE Maths
Revision Cards

Course in a Box – GCSE Maths (Guaranteed Pass)

Answer all questions in the spaces provided. 1 $2^x = 32$ Circle the value of x. [1 mark] 7 2 What is 1.8×10^{-4} as an ordinary number? Circle your answer. [1 mark] 0.000018 0.00018 $-180\,000$ -18000

Do not write outside the box

3 Expand $6x^2(x^3+2)$

Circle your answer.

[1 mark]

 $6x^5 + 2$

 $6x^6 + 2$

$$6x^5 + 12x^2$$

 $6x^6 + 12x^2$

4 30 < x < 300

x is 200% of y

Circle the correct inequality.

[1 mark]

10 < *y* < 100

$$15 < y < 150$$

Turn over for the next question

4

Turn over ▶

IB/M/Nov22/8300/3H

5

Do not write outside the box

Work out the area of the pentagon.

ABCDE is a pentagon.

[3 marks]

rea = $ABCE + CDE$ = $\frac{1}{2}(14+20) \times 11 + \frac{1}{2} \times 10 \times 7$ = $\frac{1}{2} \times \frac{3}{4} \times (1 + \frac{1}{2} \times 10 \times 7)$ = $\frac{1}{2} \times \frac{3}{4} \times (1 + \frac{1}{2} \times 10 \times 7)$
= 2×34×11 + 2×10×7
- 107 + 35
- 10 - 1 3 - 1
= 222 cm²

Answer 222 cm²

Joe, Kim and Lisa each have an amount of money.	
Joe has £72	
Joe's amount : Kim's amount = 6 : 5	
Lisa's amount is $1\frac{1}{2}$ times Joe's amount.	
Show that, in total, they have less than £250	mar
Joe 72:60 Kin	10.33
Toe 72:60 kiln Kin has £60	
72x /t = 72x1.5 = 108	
Lisa las £108	
Total = 72 + 60 + 108 = £240 < £250	
10601 - 72 + 60 + 108 = + 240 - + 250	
An our research for the source carriers a granter a subject to the source of	

Turn over for the next question

6

7 (a)	Here is the rule for a sequence.	
	After the first two terms, each term is the sum of the previous two	terms
	The 1st term is 33	
	The 2nd term is x	
	The 4th term is 73	
	Work out the value of x.	[3 marks]
	33 x 33+x 73	
	2 + 33 + x = 73	
	33+2×=73	
	2x=40 x=20	
	x = 20	
	$x = \underline{\qquad \qquad } $	
7 (b)	An expression for the n th term of a different sequence is $n-n^2$ Ruth says,	
	"All the terms will be negative because n^2 is always greater than n ."	
	Is she correct?	
	Tick a box.	
	Yes No	
	Give a reason for your answer.	[1 mark]
	First term is O ie.	
	1-12 = 1-1=0	

В	Here is some	information	about the	members	of clul	bs A	and	В.

	Number of members	Mean height of members
Club A	24	1.8 m
Club B	20	1.92 m

Work out

total height of the members of club A total height of the members of club B

Give your answer as a decimal.

[2 marks]

	-	+3.2	-	6	-	1.	152
20x1.92	3	19.4		8			

	1 120	
Answer	1.125	

Turn over for the next question

6

Turn over ▶

IB/M/Nov22/8300/3H

9 P and Q are points.

The x-coordinate of Q is 4 more than the x-coordinate of P. The y-coordinate of Q is 5 less than the y-coordinate of P.

Work out the gradient of the straight line through ${\it P}$ and ${\it Q}$.

[2 marks]

Gradient =
$$\frac{-5}{4}$$
 = -1.25

Answer -1.25

Here are the results after 250 spins of a coin. 10

Heads	128
Tails	122

The coin is spun an extra 50 times.

After all 300 spins, the relative frequency of Heads is 0.49

number of Heads: number of Tails For the extra 50 spins, work out

[3 marks]

Answer	19	. 31	
Answer	()	. "	

Turn over for the next question

5

11 Part of a running track is the arc of a semicircle joined to a straight line.

The semicircle has diameter 45 metres.

The straight line has length 75 metres.

Abby runs once along this part of the track in 18 seconds.

Work out her average speed.

Give your answer to 2 significant figures.

[4 marks]

Total =	. ~			_
Speed =	75 + 32	=	25	+ 517
Speed = 8	1 as/s			

Answer S, m/s

12 Triangles ABC and DEF are shown on a grid.

Describe a single transformation that shows the triangles are congruent.

[2 marks]

Trans la	tion	by	vector	(6)	

6

Turn over ▶

IB/M/Nov22/8300/3H

13

The tree diagram shows the probabilities.

A fair, ordinary dice is rolled and a counter is taken at random from a bag.

Do not write outside the box

Green

Do not write
outside the
box

13 (a) How do the probabilities show that all the counters in the bag are red, blue or green?

[1 mark]

They add up to 1

13 (b) Circle the probability that the counter is red or blue.

[1 mark]

0.0009

8.0

0.03

0.4

13 (c) Circle the probability that the dice lands on an even number and the counter is blue.

[1 mark]

0.15

03

0.35

0.8

Turn over for the next question

3

Turn over ▶

IB/M/Nov22/8300/3H

14	Here are two solid cubes, X and Y.
	The mass of X is 10.976 kg
	The area of each face of X is 784 cm ²
	X Y
	mass 10.976 kg
	of the description of the descri
14 (a)	Zayan wants to know the density of Y.
	He assumes that Y is identical to X.
	What density should he get for Y?
	Give your answer in grams per cubic centimetre. [4 marks]
	Side length = 5784 = 28 cm. Volume = 28 x 28 x 28 = 21952 cm ³
	V1 2 - 20 28 - 28 = 21957 cm3
	M 200 10 20 10 27
	Max Dealty = 10.96 × 1000 = 10976 g Density = 10976 = 0.5 g/cm² 21952
	Jersity = 10976 = 0.5g/cm?
	21952
	Answer 6.5 g/cm ³
	Turn over for the part goestion

			Do not writ
14 (b)	In fact,		box
	the mass of Y is less		
	the area of each face	e of Y is greater than the area of each face of X.	
	What does this mean about	the actual density of Y?	
	Tick one box.		
		[1 mark	q
	It is le	ess than the answer to part (a)	
	It is e	equal to the answer to part (a)	
	It is g	greater than the answer to part (a)	
	It is r	not possible to tell	
	Turn	over for the next question	
			5

Turn over ▶

IB/M/Nov22/8300/3H

15 A mobile phone takes 2 hours to charge from empty.

When the phone is being charged, the current flow into the phone

- starts at full current flow (100%)
- · continues at full current flow for a period of time
- gradually decreases until the phone is fully charged.

This is shown on Graph A below.

Graph B shows the percentage charge in the phone when charging from empty.

Do not write
outside the
box

Itimate the time when the current flow starts to decrease. [2 marks] Answer (0: 76 am
Answer (0: 26 am
Answer (0: 26 am
Allswei (C. 20
sing Graph A and Graph B,
stimate the percentage charge in the phone when the current flow is 40%
[1 mar
Answer & 0 %
sing Graph B , stimate the rate of increase in the percentage charge when the phone has 90% charge
cumate the rate of increase in the percentage charge when the phone has 50% charge
= \$60 % in 50 min = \$60 \cdot 50 = 1.2 % open min
= <u>\$ 60+. 50</u>
21,2 % open min

16 H is inversely proportional to the cube root of L.

H=7 when L=64

16 (a) Work out an equation connecting H and L.

[3 marks]

Answer $H = \frac{28}{3L}$

16 (b) Work out the value of H when L = 2744

12 marks

28	[2 marks]
H = 3/2744	
H= 28	
H=2	
16 - 35	Segress.

H=_____

A, B and C are points on a circle, centre O.BD is a tangent to the circle.OCD is a straight line.

Work out the size of angle x.

[3 marks]

Not drawn accurately

000 =	900	tagent	and rad	lus	ме	eet at 1	right.
BOC	- 60	32×2 =64°					
				dram			

21 -1690 - 64 = 26°	angles	in	a	triangle	add	60	1800

x = 26 33 degrees

8

18	Rearrange $9m + 4(2m - 1) = p^2 + pm$ to make m the subject.	[4 marks]
	an 14 (2m-1) = p2 +pm	
	9m + 8m - 4 = p2 + pm	
	17 n - 4 = p'+pm	
	17 m - pn - 4 = p2	
	17m - pn = p2 + 4	
	$m(17-p) = p^2+4$	
	m= p2 + 4	
	17- P	
	$M = \frac{p^2+4}{p^2+4}$	
	Answer 17 - P	
19	A circle has centre (0, 0) and passes through (0, 11)	
	Militar down the equation of the girals	

Write down the equation of the circle.

[1 mark]

Answer
$$\chi^2 + \chi^2 = |2|$$

20	There should be a train leaving a station every hour from 7 am No trains leave early.					
	P(the first train leaves on time) = 0.9 For all the other trains , if the previous train did leave on time, P(this train leaves on time) = 0.8 if the previous train did not leave on time, P(this train leaves on time) = 0.65					
20 (a)	Work out P(the first three trains leave on time) [2 marks] $0.9 \times 0.8 \times 0.8 = 0.576$					
	Answer 0.576					
20 (b	Work out P(exactly one of the next two trains does not leave on time)					
21 G	On line then lake = $0.65 \times 0.2 = 0.13$ Late then on time = $0.35 \times 0.65 = 0.2275$ 0.13 + 0.2275 = 0.3575					
25 (0	Answer					

10

21 Shape A is enlarged to shape B.

21 (a) Circle the scale factor of the enlargement.

[1 mark]

-2

 $\frac{1}{2}$

2

21 (b) Write down the coordinates of the centre of enlargement.

[1 mark]

Answer (_________, _____)

22	Simplify fully	2 +	$\frac{7-5x}{}$ +	4 x
		x+1	3	1

Give your answer as a single fraction.

[4 marks]

$$\frac{2}{x+1} + \frac{7-5x}{3} + 4x = \frac{2}{3}$$

$$\frac{2\times3}{3(x+1)} + \frac{(7-5x)(x+1)}{3(x+1)} + 4x = 4x \times 3(x+1)$$

$$\frac{3(x+1)}{3(x+1)} + \frac{3(x+1)}{3(x+1)} + \frac{3(x+1)}{3(x+1)}$$

$$\frac{6-5x^2+2x+7+12x^2+12x}{3(x+1)}$$

	4		

Answer 3(x+1)

6

23 Alec makes a bowl for dog food from a solid wooden cone.

The sketches show how the bowl is made.

The cone has radius 9 cm and perpendicular height 30 cm A smaller cone, with radius 6 cm, is removed.

Not drawn accurately

Volume of a cone = $\frac{1}{3}\pi r^2 h$ where r is the radius and h is the perpendicular height

A hemisphere with radius 6 cm is then removed.

Not drawn accurately

Volume of a hemisphere = $\frac{2}{3}\pi r^3$ where r is the radius

Do not write
outside the
box

the
4 th

5

24 On the same day, Kate buys

a car for £14 000

and

a painting for £5000

The value of the car decreases by 35% in the first year, and then by 10% each year.

The value of the painting increases by 4% each year.

Show that the painting becomes worth more than the car during the fifth year.

[5 marks]

Year	Cor	Painting
0	14000	5000
1	14000 80.65 29100	5000×1.04 = 5200
2	14000,0.65,0.9=8190	5000 × 1.04 = 5408
3	1400,0.65,0.92=7371	5000x 1.043 = 5624.32
4	14000 x 0.65 x 0.9 = 6633.9	Sooo x + 04 = 5849.29
5	14000 x 0.65 x 0.9 = 5970.51	5000 81.045 = 6083, 26

As	per	the	e ·	table	the	PIRH	year
	The state of the s						abouting
				Har			
					100 (velid) 100		

25 Two sides of a triangle are measured to 1 decimal place.

The angle between the sides is measured to the nearest degree.

Not drawn accurately

Work out the upper bound for the area of the triangle.

You must show your working.

[4 marks]

Area = {abson(C)

Upper side lengths are 7-25 and 13.65

Sin (109.5) > sin (110.5) so use

109.5 por angle Area = { x 7.25 x 13.65 x sin (109.5)

46. Q cm² Answer

Turn over for the next question

Here is a sketch of the graph of $y = 5^x$

Do not write outside the box

In parts (a) and (b) the sketch of $y = 5^x$ is shown as a dashed line.

26 (a) On the axes below, sketch the graph of $y = -5^x$

[1 mark]

26 (b) On the axes below, sketch the graph of $y = 5^x - 1$

Do not write outside the box

[1 mark]

END OF QUESTIONS

2

