

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

GCSE COMBINED SCIENCE: TRILOGY

Higher Tier Physics Paper 2H

Time allowed: 1 hour 15 minutes

Materials

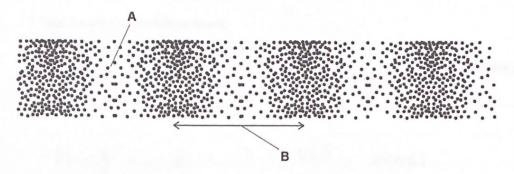
For this paper you must have:

- a protractor
- a ruler
- · a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- · Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- · Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use Question Mark 1 2 3 4 5 6 7 TOTAL


Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

0 1 Figure 1 shows a longitudinal wave.

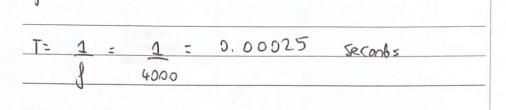
Figure 1

0 1.1 What do the labels A and B on Figure 1 represent?

Choose answers from the box.

[2 marks]

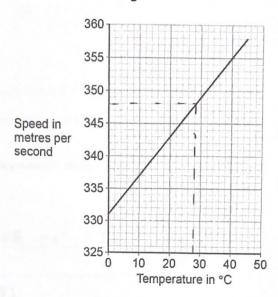
amplitude frequency rarefaction reflection wavelength


A rone faction

B Vouelength

[4 marks]

0 1.2	The wave shown in Figure 1 has a frequency of 4.0 kHz	
	Calculate the period of the wave.	
	Use the Physics Equations Sheet.	
	Give the unit.	
		[4 ma
	P= 4.0 k Hz = 4.0 x 103 Hz = 4000	H2



Question 1 continues on the next page

Sound waves are longitudinal.

Figure 2 shows how the speed of sound varies with the temperature of the air.

Figure 2

Use the Physics Equations Sheet to answer questions 01.3 and 01.4.

0 1 . 3 Write down the equation that links frequency (f), wavelength (λ) and wave speed (ν).

V= } \

0 1 . 4 A sound wave with a frequency of 300 Hz travels through the air.

The air has a temperature of 28.0 °C

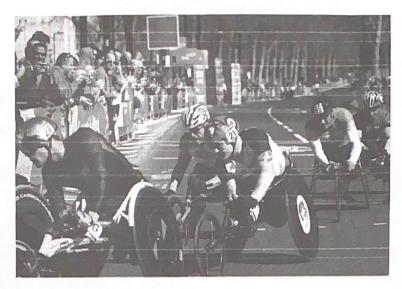
Determine the wavelength of the sound wave.

Use Figure 2.

[4 marks]

$$V = J\lambda$$
 $V = J\lambda$
 $V = J\lambda$

11


Turn over for the next question

0 2

Figure 3 shows competitors in the wheelchair race at the London Marathon.

The distance of the London Marathon is 42 000 m

Figure 3

Use the Physics Equations Sheet to answer questions 02.1 and 02.2.

0 2 . 1 Write down the equation that links distance (s), force (F) and work done (W).

1 markl

W=Fs

0 2 . 2 During the race competitors work against air resistance.

The work done against air resistance by the winner of the race was 3 360 000 J

Calculate the average air resistance acting on the winner of the race.

[3 marks]

$$W = F_S$$

$$F = \frac{W}{S} = \frac{3}{360} \frac{360}{000} = \frac{80}{1} \frac{N}{1}$$

Average air resistance = 70 N

Question 2 continues on the next page

	Use the Physics Equations Sheet to answer questions 02.3 and 02.4.	
0 2.3	Which equation links distance travelled, speed and time?	
		mark]
	distance travelled = speed × time	
	time = distance travelled × speed	
	speed = distance travelled × time	
0 2 . 4	The distance of the London Marathon is 42 000 m	
	The winning time for the race was 5600 seconds.	
	Calculate the average speed of the winner of the race.	
	· ·	narks]
	distance = speak a time	
	_ d = v × t	
	V = d = 42000 = 7.5	
	+ 5600	
	Average speed = 7.5	m/s

0 9

0 3 Figure 4 shows a child playing with a toy train.

The train is on a bridge.

Figure 4

When the child lets go of the train, the train rolls down the bridge.

1 The momentum of the train at the bottom of the bridge is 0.216 kg m/s mass of the train = 180 g

Calculate the velocity of the train at the bottom of the bridge.

Use the Physics Equations Sheet.

[4 marks]

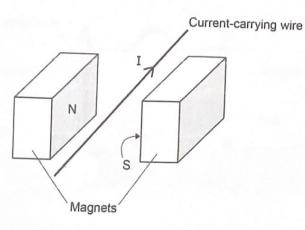
$$p = mv$$

Nomentum = mass x velocity

 $v = p = 0.216 = 1.2 m/s$
 $\sqrt{2} = 0.216 = 1.2 m/s$

8

0 3 . 2	The train collides with a stationary carriage on the track.
	Explain why the velocity of the train after the collision is less than it was before the collision.
	Use ideas about momentum in your answer.
	[4 marks]
	The total momentum in the collision


The tota	1	momentu	m i	n Ha	Collision
between				(acriage	
conserved,	۵۵	Pe			
momentum momentum	. Our	ng t	he 1	Collision,	I the
momentum	6	I the	Carri	age in) Creo ses
There fore	Itla	moment	un 6	the tre	an decreous
Because	momenta	m =	Mass J	x veloci	ty, the
Velocity	of the	ta	ain de	core a seo	J'
J				· ·	

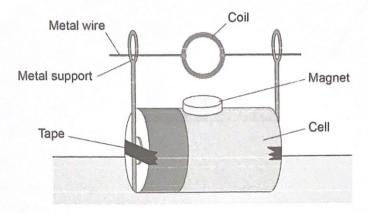
Turn over for the next question

0 4 A teacher demonstrated the motor effect.

Figure 5 shows the equipment used.

Figure 5

	Explain why there is a force on the wire when there is a current in the wire. [2 mar]
	There is a magnetic field due to
	the permanent magnets. There is also
	a magnetic field produced by the arrest in
	the wife there 7 march 11/10 the
	causing a lae.
4.2	Explain how the direction of the force on the wire can be predicted.


	- 1		[s marks]
lise	Fleming's	left hora	(ulo
linger	in the	U	
field line	ond		yar
ngu in	the	1,	
wrest,	The	11 1	will show
6	the Bro.		MILL STOW
J	J		
	field line	finge in the field lines and made in the current. The	finger in the shrect field lines and place man in the directs when the found for the found that the found

Do not write outside the box

0 4.3 Figure 6 shows a simple electric motor.

Figure 6

Explain **one** way that the motor could be changed to increase the rate at which the coil rotates.

[2 marks]

We	could	inc	irease	the	current	in the
coil		this	Would	increas	e the	lore
on	the	coil	aue	to t	lu M	plore

7

Turn over for the next question

Do not write outside the box

A student investigated how the colour of a surface affects the amount of infrared radiation the surface absorbs.

Figure 7 shows the equipment used.

The two flasks are painted different colours.

Figure 7

This is the method used.

- 1. Pour water at 20 °C into each flask.
- 2. Place a bung and thermometer into each flask.
- 3. Place each flask in front of the infrared lamp.
- 4. Measure the temperature of the water every 30 seconds for 10 minutes.

0 5 . 1	Explain two improvements to the method the student used.	
	[4 marks]	
	1 One improvement the student could	
	do would be to place each plask the some	
	dist once from the lamp. This means the intensity	
	of infrared radiation in cident from each flook is the sor	M_
	2 Another improvement would be to use	
	egual volumes of Water. This is because	
	the volume appets the rate at which	
	the water temperature increases.	

Figure 8 shows the results for each flask.

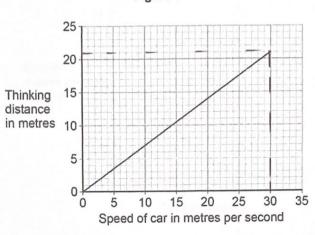
Figure 8

0 5 . 2 Complete the sentences.

[2 marks]

After 100 seconds the temperature difference between the black flask and the white flask was _____ °C

The temperature of the white flask stopped increasing. The temperature inside the black flask continued to increase for a further _____240___ seconds.



0 5.3	The initial rate of absorption of infrared radiation by the black flask was greater than the initial rate of absorption by the white flask.	box
	How does Figure 8 show this? [1 mark]	
	The black flask line has a greater	
	gradient.	
0 5.4	Explain why the temperature of the water in the flasks increased and then became constant. [4 marks]	
	TI ()	
	The glasks absorb infrared radiation, and	
	tronsper energy to the surroundings. Initially	,
	the cate of absorption of the infrared cadiato	Λ
	is greater than the rate of every transfer	
	to suroundings. Then, the rate of energy transfer	
	in creases with the temperature of the plank	
	until the rate of energy transfer to the	
	surroundings is agreal to the rate of transfer	11
	to the plasks. The temperare remains I constart	
	from this point.	
	Turn over for the next question	

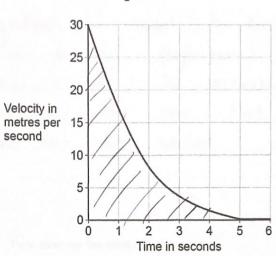
- 0 6 The distance a car travels during the driver's reaction time is called the thinking distance.
- 0 6 . 1 Figure 9 shows how thinking distance depends on speed for a car.

Figure 9

Determine the driver's reaction time.

Use the Physics Equations Sheet.

[3 marks]


Aistone	1)	speed a time
		30 m/s x time

Question 6 continues on the next page

Do not write outside the box

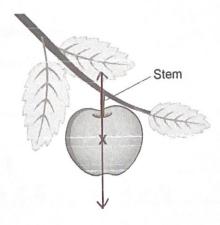
Figure 10

Determine the braking distance of the car.

[3 marks]

One	Square =	5 me	t res			
	Was					
reed	to And	onea	under	graph		
Appro	aiomately	9	Sque	ares		
	J					
	1x5=	45 m				
		Braki	ng distance) =	45	m

[3 marks]						constant.	car was no	
leation.	accel	5	lquo	Ġ	ied	q/aA	The	
5	nal	portio	'ρ	ectly	Air	Jis	Force	
n is	eleation	e occ	'	and	,	leation	م درد	
the	that	lans	0 1	Th	+	constan	not	
		ostant.	- 0	00	also	10	Porce	


Turn over for the next question

0 7 Figure 11 shows a stationary apple hanging from a tree.

The ${\bf X}$ marks the centre of mass of the apple.

Figure 11

0 7.1 Draw two arrows on Figure 11 to show the forces acting on the apple.

[2 marks]

Question 7 continues on the next page

0 7 . 2

It takes 0.50 s for the apple to fall to the ground.

The initial velocity of the apple is 0 m/s acceleration due to gravity = 9.8 m/s²

Calculate the distance fallen by the apple.

Use the Physics Equations Sheet.

[6 marks]

$$V^2 - u^2 = 2as$$

 $4.9^2 - 0^2 = 2 \times 9.8 \times 5$

$$S = 2 \times 1.8 \times 5 = 4.9^2 / 2 \times 9.8 = 1.2 m$$

Distance = 1.2 m

Distance =

In Question 07.2 it was assumed that the acceleration was a constant 9.8 m/s²

Do not write outside the box

As t	he	opple	Palls,	the	aic	Neo istone
00		inco	eases.			the
result		Dorce	dounwarl	ls on	the	aple
		1 This	me	ans tl	re o	ucceleation
IIIW	also	deca	ease,	There by	ne a	cceleat con
		constant				

12

END OF QUESTIONS

0 7 . 3

Evaluate this assumption.