## GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - COMPONENT 2
(HIGHER TIER) C300UB0-1

## INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE MATHEMATICS

## AUTUMN 2020 MARK SCHEME

\begin{tabular}{|c|c|c|}
\hline GCSE (9-1) Mathematics Component 2: Higher Tier \& Mark \& Comment \\
\hline \[
\begin{array}{r}
1(\mathrm{a}) \\
\frac{6500-5720}{6500} \times(100) \text { or }\left(1-\frac{5720}{6500}\right) \times(100) \\
\end{array}
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& If no marks, award SC1 for an answer of 88\% \\
\hline \[
\begin{aligned}
\& 1(\mathrm{~b}) \\
\& 8495 \times(1-0.16)^{11} \\
\& (£) 1248.06(0 \ldots) \text { or }(£) 1248
\end{aligned}
\] \& M2
A1 \& \begin{tabular}{l}
May be seen in stages \\
M1 for sight of \(8495 \times 0.84(=7135.8)\) oe ISW \\
Allow (£)1248.1(0)
\end{tabular} \\
\hline \& (5) \& \\
\hline \[
\begin{aligned}
\& \begin{array}{l}
2^{*} \text {. } \\
\text { (Interior angle of the heptagon }=) \\
180-360 \div 7 \\
\mathrm{OR}(7-2) \times 180 \div 7 \\
\mathrm{OR}(7 \times 180-360) \div 7 \\
\quad=128.6\left(^{\circ}\right) \text { or } 128.57(\ldots)\left(\left(^{\circ}\right)\right. \\
(\text { Unique angle in triangle }=) \\
\left.(360-90-90-128.6=) 51.4(28 \ldots)^{\circ}\right) \\
\text { Working to show that } x=64.3 \text { to } 1 \text { d.p. } \\
(180-51.4(28 \ldots)) \div 2=64.285 \text { to } 64.3
\end{array}
\end{aligned}
\] \& M1
A1
B1
B1 \& May be seen on diagram. FT 'their derived 128.6' May be seen on diagram CAO \\
\hline \begin{tabular}{l}
Ālternative method 1 working from 64.3 (Unique angle in triangle =)
\[
\begin{array}{ll}
(180-64.3-64.3) \& =51.4 \\
(\text { Interior angle of the heptagon }=) \& \\
(360-90-90-51.4) \& =128.6
\end{array}
\] \\
(Interior angle of the heptagon =)
\[
180-(360 \div 7)
\] \\
\(O R(7-2) \times 180 \div 7\)
\[
O R(7 \times 180-360) \div 7
\] \\
\(=128.6\) or \(128.57\left(\ldots{ }^{\circ}\right)\)
\end{tabular} \& B1
\(B 1\)
\(M 1\) \& FT 'their 180-64.3-64.3' Only awarded if this is clearly the interior angle of the heptagon \\
\hline \begin{tabular}{l}
Alternative method 1 a for final 2 marks (Sum of the interior angles of a heptagon=)
\[
(7-2) \times 180 \text { o.e }
\] \\
AND \(128.6 \times 7\)
\[
900
\]
\end{tabular} \& M1
A1 \& \begin{tabular}{l}
MO for 'their \(128.6 \times 7\) ' = 900(.2) alone \\
Allow for 900 and 900.2
\end{tabular} \\
\hline \begin{tabular}{l}
Alternative method 2 using exterior angles Exterior angle (of the heptagon) =
\[
360 \div 7
\]
\[
=51.4\left(28 \ldots{ }^{\circ}\right)
\] \\
(Unique angle in triangle \(=\) )
\[
\begin{array}{r}
\left(360-90-90-\left(180-51.4\left(28 \ldots .^{\circ}\right)\right)\right. \\
=51.4\left(28 \ldots{ }^{\circ}\right)
\end{array}
\] \\
Working to show that
\[
(x=)(180-51.4(28 \ldots)) \div 2=64.3
\]
\end{tabular} \& M1
A1
B1

B1 \& | Method must be seen |
| :--- |
| May be seen on diagram. FT 'their derived 51.4(28...) |
| May be seen on diagram. CAO | <br>

\hline \& (4) \& <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
3.*
\[
(1-0.8(0)) \times 40
\] \\
OR \(40-0.8(0) \times 40\) \\
OR \((0.15+0.05) \times 40\) \\
OR \(0.15 \times 40+0.05 \times 40\) \\
8
\end{tabular} \& M2

A1 \& | M1 for sight of one of the following: |
| :--- |
| - $1-0.8(0)$ |
| - $0.15+0.05$ |
| - $0.2(0)$ |
| - $\quad 0.8(0) \times 40$ |
| - 32 |
| - $0.15 \times 40$ |
| - $0.05 \times 40$ |
| CAO | <br>

\hline \& (3) \& <br>

\hline $$
\begin{aligned}
& 4 .^{*} \\
& (h=) \frac{500}{\pi \times 3.5^{2}}=500 / 38.4(8 . .) \\
& (h=) 12.98(\ldots) \text { to } 13(\mathrm{~cm})
\end{aligned}
$$ \& M2

A1 \& | M1 for $500=\pi \times 3.5^{2} \times h$ |
| :--- |
| CAO |
| Not from wrong working If no marks award SC1 for an answer of: 25.97 to $26(.0)$ from $500=\frac{1}{2} \pi \times 3.5^{2} \times h$ OR 38.96 to $39(.0)$ from $500=\frac{1}{3} \pi \times 3.5^{2} \times h$ | <br>

\hline \& (3) \& <br>

\hline | 5(a) |
| :--- |
| Any valid reason e.g. |
| '10 years is too far ahead to predict' 'the paper might not be produced if sales continue to fall' 'the change each time is not consistent' | \& B1 \& | If a satisfactory reason is given ignore further spurious comments. |
| :--- |
| Allow e.g. |
| 'because the sales may not follow the pattern of the graph' |
| 'there is not an equal; drop in numbers sold every 5 years' 'it's too far in the future we cannot tell' 'it could increase instead of decrease' 'more people may read the paper on the internet' |
| Do not allow statements that do not relate to the graph e.g. |
| 'there might be more or less than 10000 sold in 2025' as no reference to the trend 'we can't tell' as no reference to time or trend | <br>

\hline $$
\begin{aligned}
& 5(\mathrm{~b}) \\
& (52000000 \div(16+9) \times 16 \\
& 33280000
\end{aligned}
$$ \& M1

A1 \& | Allow a place value slip in 52000000 for M1 only |
| :--- |
| Allow 33000000 and 33300000 | <br>

\hline \& (3) \& <br>
\hline
\end{tabular}

| 6.* |  |  |
| :---: | :---: | :---: |
| $5 x+40=6 x+20$ | M1 | Allow for $5 \times 20+40=6 \times 20+20$ which may be seen in stages |
| $x=20$ | A1 |  |
| $5 \times 20+40+y+35=180 \mathrm{OR}$ | M2 | FT 'their 20' for possible M2 provided previous |
| $6 \times 20+20+y+35=180$ OR |  | M1 awarded |
| $5 \times 20+40+2(y+35)+6 \times 20+20=360$ |  | May be seen in stages. |
|  |  | M1 for a correct equation |
|  |  | $5 \mathrm{x}+40+\mathrm{y}+35=180$ |
|  |  | or $6 x+20+y+35=180$ <br> or $5 x+40+y+35+6 x+20+y+35=360$ |
| $y=5$ | A1 | CAO |
| 6. *Alternative method (using simultaneous equations) |  |  |
| Writes two correct equations in $x$ and $y$ $5 x+40+y+35=180$ | M2 | M1 for each correct equation May be simplified |
| or $6 x+20+y+35=180$ |  |  |
| or $5 x+40+y+35+6 x+20+y+35=360$ |  |  |
| Method to eliminate variable, e.g. equal | m1 | Allow one error in one term but not with equal |
| coefficients and method to find second |  | coefficients |
| variable |  |  |
| Finds the value of the first variable | A1 | CAO |
|  |  | $x=20$ OR $y=5$ |
| Second variable | A1 | FT 'their first variable' |
|  | (5) |  |
|  |  |  |
| Correct perpendicular bisector construction with appropriate arcs | B2 | B1 for perpendicular bisector within tolerance $\left( \pm 2^{\circ}\right)$ without arcs or with invalid arcs or for |
|  |  | correct pair of arcs that intersect twice |
| Correct angle bisector construction of XOY with appropriate arcs | B2 | B1 for angle bisector within tolerance $\left( \pm 2^{\circ}\right)$ without arcs or with invalid arcs or for a |
|  |  | correct pair of arcs |
| Correct point indicated | B1 | FT provided at least B1, B1 awarded; may be implied by intersecting loci |
|  | (5) |  |
| 8*(a) |  |  |
| $\left(x^{2}=\right) 11.3^{2}-8.6^{2}$ | M1 |  |
| $x^{2}=53.73$ or $(x=) \sqrt{ } 53.73$ | A1 |  |
| $(x=) 7.3(3 \ldots \mathrm{~cm})$ | A1 | FT from M1 for the correctly evaluated square root of 'their 53.73' provided 'their $x<11.3$ ' |
|  |  |  |
|  |  | If no marks award SC2 for an answer of $7.3(3 . .$.$) seen from use of 8.6^{2}-11.3^{2}$ |
| 8(b) |  |  |
| $\cos (\mathrm{y})=8.6 \div 13.5$ | M1 | Accept any equivalent full method |
| $(\mathrm{y}=) \cos ^{-1}(8.6 \div 13.5)$ | m1 |  |
| ( $\mathrm{y}=$ ) 50(.4....${ }^{\circ}$ ) | A1 |  |
|  | (6) |  |


| 9. $(7 \cdot 3 \times 60 \div 50)-(7 \cdot 3 \times 60 \div 70)$ <br> 2.5 (mins) | M3 | May be seen in stages <br> Allow M3 for $(7 \cdot 3 \times 60 \div 70)-(7 \cdot 3 \times 60 \div 50)$ <br> M2 for $7 \cdot 3 \div 50-7 \cdot 3 \div 70$ <br> ( $=0 \cdot 146-0 \cdot 104 . .=0 \cdot 0417 \ldots$ or $0 \cdot 042$ ) <br> may be embedded in other calculations <br> OR $7.3 \times 60 \div 50$ ( $=8.76 \mathrm{~min}$ ) <br> OR $7.3 \times 60 \div 70$ ( $=6.257 \ldots \mathrm{~min})$ <br> M1 for $7 \cdot 3 \div 70(=0 \cdot 104 .$. <br> OR $7 \cdot 3 \div 50(=0 \cdot 146)$ <br> CAO |
| :---: | :---: | :---: |
|  | (4) |  |
| $\begin{aligned} & 10(\mathrm{a}) \\ & 7476 \div(10+8+3) \times 2=712 \\ & \text { OR }(712 \div 2) \times(10+8+3)=7476 \\ & \text { OR } 7476 \div(10+8+3) \times 10 \\ & \quad-7476 \div(10+8+3) \times 8=712 \end{aligned}$ | B2 | B1 for sight of $7476 \div(10+8+3)(=356)$ Not for 356 from $712 \div 2$ <br> OR 3560 OR 2848 OR 1068 |
| 10(b) <br> $\frac{5}{8}$ or $2: 1$ oe <br> (5:3 AND) $6: 3$ <br> OR 0.62(5) AND 0.66(...) or 0.67 <br> OR 62(.5)\% AND 66(...)\% or 67\% <br> OR 15/24 AND 16/24 <br> OR 1.6(...) : 1 or $1.7: 1$ AND $2: 1$ <br> OR 1:0.6 AND 1: 0.5 <br> AND Third match unambiguously indicated | B1 B1 | Allow for $5 \times \mathrm{n} \div 8$ AND $2 \times \mathrm{n} \div 3$ where n is any value <br> Allow for the correct evaluation of both 'their $5 \times \mathrm{n} \div 8$ AND $2 \times \mathrm{n} \div 3$ ' <br> AND Third match unambiguously indicated |
|  | (4) |  |
| $\begin{aligned} & 11 . \\ & 1270-900(=370) \\ & \frac{370}{400} \times 1000(=925) \text { or } \frac{370}{400} \times 600(=555) \\ & 1270-925 \quad \text { or } 900-555 \\ & 345(\mathrm{~g}) \end{aligned}$ | M1 <br> m1 <br> m1 <br> A1 | CAO <br> If $\mathrm{M} 1 \mathrm{m0} \mathrm{m0} \mathrm{A0} \mathrm{then} \mathrm{award} \mathrm{SC1} \mathrm{for} \mathrm{an}$ answer of $653(.33$..g) from use of 400 ml remaining |
| Alternative method $1270-900(=370)$ <br> (Bottle and 200 ml have mass) 900 - 370 $(=530 \mathrm{~g})$ <br> (Mass of bottle =) $530-370 \div 2$ $345(g)$ | M1 <br> m1 <br> m1 <br> A1 <br> (4) | FT 'their 1270 - 900' <br> CAO |
| $\begin{aligned} & 12(a) \\ & -2.2 \end{aligned}$ | B1 | CAO <br> B0 for (3.5, -2.2) |
| $\begin{aligned} & 12(\mathrm{~b}) \\ & 5.6 \end{aligned}$ | B2 | B1 for $3.5-1.4$ or $3.5+(3.5-1.4)$ or clear evidence of attempting one of these. Accept 3.45 to 3.55 as 'their 3.5' |
|  | (3) |  |
| $\begin{aligned} & 13 . \\ & \left(3.30 \times 10^{23}\right) \div\left(6.08 \times 10^{19}\right) \\ & 5430 \text { or } 5.43 \times 10^{3} \end{aligned}$ | M1 A2 | A1 for $5427 \cdot(6 \ldots)$ or 5428 or equivalent |
|  | (3) |  |


| 14. $4 n^{2}-4 n+1$ <br> Correct justification e.g. ' $4 n^{2}$ and $4 n$ are even so $4 n^{2}-4 n+1$ is odd' or ' $=4\left(n^{2}-n\right)+1$ or ${ }^{\prime}=2\left(2 n^{2}-2 n\right)+1$ ' | B1 B1 | Dep on first B1 <br> If no marks allow SC2 for a complete explanation e.g. $2 n$ is even, so $2 n-1$ is odd, odd $\times$ odd $=$ odd, so $(2 n-1)^{2}$ is odd or SC1 for a partial explanation e.g. $2 n-1$ is odd, odd $\times$ odd $=$ odd, so $(2 n-1)^{2}$ is odd SC1 for a complete justification with one error in the expansion: $4 n^{2}-4 n-1$ OR $4 n^{2}+4 n+1$ OR $4 n^{2}-2 n+1$ |
| :---: | :---: | :---: |
|  | (2) |  |
| 15. $a+b=19$ | B1 | Allow for $a+5+1+b+2+3=30$ |
| $(a+2 \times 5+1 \times 3+4 b+5 \times 2+6 \times 3) \div 30=2.7$ OR $(a+4 b+41) \div 30=2.7$ OR $a+2 \times 5+1 \times 3+4 b+5 \times 2+6 \times 3=30 \times 2.7$ | M1 |  |
| $a+4 b=2.7 \times 30-41$ or $a+4 b=40$ | M1 | FT 'their derived 41' |
| Complete method to solve the simultaneous equations | M1 | FT 'their equations' for M1 only |
| $a=12$ and $b=7$ | A1 | CAO |
|  | (5) |  |
| 16(a) |  |  |
| $\frac{1}{3} \pi r^{2} \times 20=2400$ | M1 |  |
| $\left(r^{2}=\right) 3 \times 2400 \div 20 \pi(=114.5(9)$ or 114.6) | A1 | (r = 10.7(0...)) |
| $\left(\mathrm{L}^{2}=\right) 114.5(9 \ldots)+20^{2}$ or $10.7^{2}+20^{2}$ | M1 | FT 'their derived r ' |
| $(\mathrm{L}=)$ answer in the range 22.68 to 22.7 (cm) | A1 | FT 'their derived r' providing 'their L' > 20 Allow 23 from correct working. |
| 16(b) |  |  |
| Use of $18 \div 12$ or $12 \div 18$ oe | B1 | May be embedded in further working |
| $(18 \div 12)^{2} \times 300$ or $300 \div(12 \div 18)^{2}$ oe | M1 | Award M1 for any other complete and correct method |
| 675 (cm ${ }^{2}$ ) | A1 |  |
|  |  | Award B1 M0 A0 SC1 if 675 obtained from use of curved surface area $=300 \mathrm{~cm}^{2}$. |
|  | (7) |  |




| $\begin{aligned} & 23(\mathrm{a}) \\ & \mathrm{DC}=\frac{9.6}{\sin (180-(79+39))} \times \sin 39 \end{aligned}$ | M2 | M1 for $\frac{D C}{\sin 39}=\frac{9.6}{\sin (180-(79+39))}$ |
| :---: | :---: | :---: |
| $6.8(\ldots)(\mathrm{cm})$ | A1 |  |
| 23(b) <br> $A \widehat{D} B>101$ <br> $\sin A \widehat{D} B<\sin 101$ <br> Mona's area is $1 / 2 \times 9.6 \times 5.7 \sin A \widehat{D} B$ and is too large or $1 / 2 \times A D \times B D \times \sin A \widehat{D} B$ is too large | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | Accept example of $101<A \widehat{D} B<101.5$ Accept FT example of $0.9799<\sin A \widehat{D} B<0.9816$ <br> Need both 'too big' and sight of $1 / 2 a b s i n C$. <br> Accept calculation using $1 / 2 \times A D \times B D \times \sin$ $A \widehat{D} B$ e.g. $26.810<$ area < 26.857 <br> If no marks award SC1 for a convincing explanation without calculations, e.g. by drawing <br> B3 for Area $=1 / 2 \times 9.6 \times 5.7 \sin A \widehat{D} B$ <br> and $\sin 101>\sin A \widehat{D} B$ |
|  | (6) |  |
| 24(a) <br> Correct sketch with inflection points at $(0,0),(180,0)$ and $(360,0)$ AND graph tending towards the vertical asymptotes at $x$ $=90$ and $\mathrm{x}=270$ | B2 | If vertical asymptotes not seen, they may be implied by a break in the curve of 'their sketch' at $x=90 x=270$ provided there is asymptotic behaviour. <br> Graph must be attempted from $\mathrm{x}=0$ to $\mathrm{x}=$ 360. <br> Ignore continuation of sketch beyond these values. <br> B1 for sketch with inflection points at $(0,0)$, $(180,0)$ and $(360,0)$ only OR vertical asymptotes seen at 90 and 270 only |
| 24(b) <br> 40 and 220 and no others in the range | $\begin{aligned} & \mathrm{B} 2 \\ & \hline(4) \end{aligned}$ |  |
| $\begin{aligned} & \text { 25(a)(i) } \\ & 135 \end{aligned}$ | B1 |  |
| $\begin{aligned} & 25(\mathrm{a})(\mathrm{ii}) \\ & 33 \text { or } 33.8 \text { or } 34 \end{aligned}$ | B2 | Award B2 for answers of $32.59(\ldots)$ or 32.6 from working year by year and rounding down to a whole number. <br> B1 for any one of the following seen <br> - $1.06^{5}(=1.338(\ldots))$ or $133.8(\ldots)$ or 134 <br> - $\quad 135 \times 1.06^{5}(=180.66 \ldots)$ <br> - $179,180(.66)$ or 181 voles after 5 years |
| $\begin{aligned} & 25(\mathrm{a})(\mathrm{iii}) \\ & 0.54(. . .) \end{aligned}$ | B1 |  |
| 25(b) $\left(1+\frac{p}{100}=\right) \sqrt[20]{2} \text { or } 1.03526 \ldots$ | B2 | Allow B2 for $p=\sqrt[20]{2}$ or $p=1.03(52 \ldots)$ <br> B1 for $(300 \times)\left(1+\frac{p}{100}\right)^{20}=2(300)$ or $x^{20}=2$ <br> Allow B1 for $p^{20}=2$ |
| $3.5(26 \ldots)$ | B1 |  |



