Surname
Other Names

Centre Number	Candidate Number

GCSE

||| || ||||||||||||||||||||||||||||||||||||||
C300UB0-1
A18-C300UB0-1

MATHEMATICS - Component 2
Calculator-Allowed Mathematics HIGHER TIER

THURSDAY, 8 NOVEMBER 2018

- MORNING

2 hours 15 minutes

ADDITIONAL MATERIALS

A calculator will be required for this examination.
A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.
Take π as 3.14 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the need for good English and orderly, clear presentation in your answers.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	2	
2.	4	
3.	2	
4.(a)	8	
4.(b)	5	
5.	2	
6.	5	
7.	5	
8.	2	
9.(a)(b)(c)(d)	5	
$9 .(e)$	1	
10.	5	
11.(a)	3	
11.(b)	4	
12.	4	
13.	7	
14.	9	
15.	6	
16.	10	
17.	9	
18.	6	
19.	6	
20.	6	
21.	4	
Total	120	

Formula list

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
\end{gathered}
$$

Kinematics formulae

Where a is constant acceleration, u is initial velocity, v is final velocity, s is displacement from the position when $t=0$ and t is time taken:

$$
\begin{gathered}
v=u+a t \\
s=u t+\frac{1}{2} a t^{2} \\
v^{2}=u^{2}+2 a s
\end{gathered}
$$

1. A length of wire is cut into 3 pieces.

The 2 shortest pieces are the same length.
The longest piece is 3 times the length of each of the shortest pieces.
(a) Write down the ratio of the lengths of the 3 pieces of wire.
\qquad
\qquad
(b) What fraction of the original length of wire is the longest piece?
\qquad
\qquad
2. Rearrange each of the following to make w the subject of the formula.
(a) $\frac{7}{w}=e$
\qquad
(b) $3(w+5)-f=g$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. A road track measures $2 \cdot 2 \mathrm{~cm}$ on a map with a scale of $1: 25000$.

What is the actual length of the road track?
Give your answer in km.
\qquad
\qquad

4. Gregor owns a restaurant.

(a) The diagram shows a circular place mat and a square place mat.

Diagram not drawn to scale

The radius of the circular place mat is 14 cm .
(i) Calculate the circumference of the circular place mat.

\qquad
(ii) The area of the square place mat is 25% more than the area of the circular place mat.

Calculate the perimeter of the square place mat.
Comment on the accuracy of your answer.
\qquad

Comment:
(b) Gregor plans to buy some spoons and forks.

A bag of 24 spoons costs $£ 19.95$.
A box of 18 forks costs $£ 15.55$.
Bags and boxes cannot be split.
Gregor decides to buy the same number of spoons as forks.
He places an order to buy the smallest number of each that he can.
Complete the details on the order form shown at the bottom of the page.
You must show all your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Order form	Cost (For the required numbers ordered)
.... bags of spoons).
..... boxes of forks	
Total cost of the complete order $£$	

5. Gary measures the depth of a river in 6 places between two bridges.

The depths are as follows:
$\begin{array}{lllll}48.8 \mathrm{~cm} & 55.1 \mathrm{~cm} & 34.6 \mathrm{~cm} & 75.2 \mathrm{~cm} & 85.7 \mathrm{~cm}\end{array} \quad 96.1 \mathrm{~cm}$
Gary decides to write each of the 6 depths correct to the nearest 10 cm .
He states that the median depth of the river between the two bridges is 70 cm .
Give two reasons why the method Gary used to obtain this median depth leads to an inaccurate result.

Reason 1:

Reason 2:
6.

The area of the right-angled triangle is $41.82 \mathrm{~cm}^{2}$.
Calculate the area of the obtuse-angled triangle.
\qquad
\qquad
\qquad
\qquad

[^0](b) Which two of the following equations represent a straight line that is parallel to $y=8 x-3$? Circle your answers.
\[

$$
\begin{array}{lrr}
y=-3 x+3 & y=8 x+3 & y=-8 x+3 \\
y=-8 x-8 & 8 x+y+3=0 & y-8 x-8=0
\end{array}
$$
\]

8. A brand of toothpaste is available in two different sizes.
87.5 ml tube costs 49 p .

125 ml tube costs 72 p .
Which size of toothpaste offers the better value for money? You must show all your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
9. A sketch of a graph representing the equation $y=3+2 x-x^{2}$ is shown below.

(a) Find the y-coordinate when $x=0$.
\qquad
\qquad
(b) Find the y-coordinate when $x=-3$.
\qquad
\qquad
(c) Give the coordinates of the point where the sketch shows a gradient of zero.
\qquad
\qquad
(d) Find the coordinates of all points for which $3+2 x-x^{2}=0$.
\qquad
\qquad
\qquad
(e) Does the point with coordinates $(8 \cdot 2,-47 \cdot 84)$ lie on $y=3+2 x-x^{2}$?

You must show all your working to support your answer.
\qquad
\qquad
\qquad
\qquad
10. The perimeter of the rectangle shown below is 232.8 cm .

$$
3(7 x+5) \mathrm{cm}
$$

$\square 2 x-9 \mathrm{~cm}$

Diagram not drawn to scale

Form an equation in terms of x and solve it. Hence find the dimensions of the rectangle.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11. Ms Leighton arranged a $£ 15000$ loan for 22 years to buy a canal boat. After 22 years the loan is to be paid back in full together with compound interest at 3.4% per annum.
(a) Ms Leighton did not plan to make any payments during the 22 years.

How much would Ms Leighton need to pay back after 22 years?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) In fact, Ms Leighton paid off£10000 of the loan in a single payment at the end of 10 years. For each of the next 12 years compound interest continues to be charged at rate of 3.4% per annum on the amount owed.

How much would Ms Leighton pay back in total during the full period of the loan? Give your answer to the nearest $£$.
12. Jenny is setting up a stall offering prizes in a community hall. She has a bag of white, red, green and black balls.
All the balls in the bag are the same size.
A player pays $£ 1$ to select a ball at random.
The probability that a player selects:

- a white ball is $0 \cdot 4$,
- a red ball is $0 \cdot 2$,
- a green ball is 3 times the probability of selecting a black ball.

When either a black ball or a red ball is selected the player will win a prize.
The prizes are:

- $£ 2.50$ for selecting a black ball,
- $£ 1.50$ for selecting a red ball.

Any ball selected is to be placed back into the bag before the next player has a go.
If 300 players select a ball, show that Jenny can expect to make a profit in excess of $£ 125$. [4]

Examiner
\qquad
\qquad
\qquad
\qquad
13. Eleri goes on holiday to visit historic gardens in Italy. In many of the gardens she notices irregular staircases. Each staircase has horizontal steps and vertical rises.

The angle of rise is measured from the horizontal upwards.

(a) The bottom step on a staircase is 26.4 cm wide with a vertical rise of 24 cm . The second step in this staircase is 39.5 cm wide and has the same angle of rise.

Diagram not drawn to scale
(i) Calculate the angle of rise.
\qquad
\qquad
\qquad
(ii) Hence use trigonometry to calculate the vertical rise of the second step in centimetres.
Give your answer correct to 2 significant figures.
You must show all your working.
\qquad
\qquad
\qquad
\qquad
(b) Look again at the diagram and your method of using trigonometry, in part (a).

- Show how the vertical rise of the second step could be calculated without the use of trigonometry.
You must show all your working.
(A scale drawing is not acceptable, as you are asked to calculate.)
- Evaluate which was the most efficient method of calculating the vertical rise of the second step.
\qquad
\qquad
\qquad

Evaluation:
14. (a) Albert sells bird food in 28.8 kg sacks.

The bird food is a mix of millet, peanuts and sunflower seeds.
It contains, by mass, the millet, peanuts and sunflower seeds in the ratio $4: 5: 7$.
To make the bird food mix, Albert pays

- 95p per kg for millet,
- $£ 1.04$ per kg for peanuts, and
- 75 p per kg for sunflower seeds.

On Friday, Albert sold twelve 28.8 kg sacks of bird food for $£ 29.99$ each.
How much profit did Albert make from selling the bird food on Friday?
\qquad
(b) Nicole and Arthur share a house with a garden.

The probability that Nicole feeds the birds on a Saturday is 0.65 . When Nicole does not feed the birds, the probability that Arthur feeds the birds is 0.72 .

Arthur says to Nicole,
'The probability that the birds are not fed in our garden on a Saturday is less than 10\%.'

Show that Arthur is correct.
You must show all your working.
15. Graham has recorded the time taken to score the first goal in each match for his favourite team, The Whisper Wanderers.
For a number of seasons he collected grouped data in a frequency table.
He then displayed this grouped data in a frequency diagram, as shown below.

(a) How many matches are represented in the frequency diagram?

[^1]\qquad
\qquad
(ii) How has any assumption you made in calculating your estimate of the mean time affected your answer?
16. (a)

Diagram not drawn to scale

Megan buys ice cream in a 2 litre pack.
(i) How many cones could Megan fill? You may assume that each cone is completely filled, level to the top, with ice cream.
(ii) What impact does the assumption have on your answer in (a)(i)?
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Two mathematically similar ice cream cones are shown below.

The smaller cone has a volume of $40 \mathrm{~cm}^{3}$.
Calculate the volume of the larger cone.
\qquad
\qquad
\qquad
\qquad
17. (a) Factorise and hence solve the following equation.

$$
6 x^{2}-x-2=0
$$

(b) Find the nth term of the following sequence.

$$
4,7,12,19,28,39, \ldots . . .
$$

(c) Calculate the 105th term of a sequence with an nth term of $3 n^{2}-n$.
\qquad
\qquad
(d) The expression $x^{2}+14 x+25$ has a minimum value.

By completing the square, complete the statements below. You must show all your working.
'The minimum value of $x^{2}+14 x+25$ occurs when $x=$ \qquad ..'
'The minimum value of $x^{2}+14 x+25$ is \qquad ..'
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
18. Solve the following simultaneous equations.

$$
\begin{aligned}
& y=4 x^{2}+5 x-7 \\
& y=3 x+2
\end{aligned}
$$

Use an algebraic method and give your answers correct to 2 decimal places.
\qquad
19. The graph shows the velocity of a car during the first hour of a journey.

(a) At $t=4$, find the velocity of the car in $\mathbf{k m} / \mathbf{m i n}$.
\qquad
(b) Calculate the acceleration of the car when $t=17$. Give your answer in $\mathbf{k m} / \mathbf{m i n}^{2}$.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Calculate the average acceleration of the car between $t=40$ and $t=50$. Give your answer in $\mathbf{k m} / \mathbf{h}^{2}$.
\qquad
\qquad
\qquad
\qquad
20. Quadrilateral $E F G H$ is shown below.

Diagram not drawn to scale

Calculate the area of $E F G H$.

\qquad
21. The density of a piece of stainless steel is $7750 \mathrm{~kg} / \mathrm{m}^{3}$, correct to the nearest $5 \mathrm{~kg} / \mathrm{m}^{3}$. A block of this stainless steel is in the shape of a cuboid.
The dimensions of the cuboid are $0.33 \mathrm{~m}, 0.22 \mathrm{~m}$ and 0.11 m , all given correct to the nearest 1 cm .

Calculate the least possible mass of the block.
Give your answer in kg, correct to 1 decimal place. You must show all your working.
\qquad

Least possible mass is kg

END OF PAPER

For continuation only.
Forcontinual

BLANK PAGE

BLANK PAGE

[^0]: 7. (a) A straight line passes through the points $(0,7)$ and $(3,19)$.

 Find the equation of the straight line.
 Give your answer in the form $y=m x+c$.

[^1]: Examiner only
 (b) (i) Calculate an estimate of the mean time taken for The Whisper Wanderers to score their first goal in these matches.

