шјес
cbac

GCSE MARKING SCHEME

SUMMER 2017

GCSE (NEW) MATHEMATICS - COMPONENT 1 (HIGHER) C300UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
1.* (a) (i) Valid comment e.g. 'The first line expresses an opinion' or 'It pushes you to give a low answer', or 'It tells you you should not be eating much chocolate'	E1	Do not allow 'She only asks about one day.' Allow eg 'She says too much chocolate is bad for your health.'
(a)(ii) Appropriate criticism e.g. 'It is too vague' or 'How big is a piece?', 'Cannot answer no pieces.' 'Cannot answer more than 6'.	E1	Allow e.g. 'She is only asking about 1 particular day'.
(b) 'No' stated or implied with two valid reasons based on sample size, location, time or targeting teenagers e.g. ' 10 people is too few', 'People outside a supermarket are not likely to be teenagers'	E2	E1 for 'No' with only one valid reason Allow eg 'The people could all be different' or 'Monday morning limits the type of people she can ask.' or 'A lot of people may be at work on a Monday morning.'
	(4)	
(a) $7 x-3 x=4-2$ or equivalent	B1	Seen or implied FT until 2nd error
$x=\frac{2}{4}$ or equivalent	B1	FT Mark final answer
(b) $3-2 x+18=5 x$ or equivalent	B1	Seen or implied FT until 2nd error
	B1	
$x=3$	B1	FT
(c)(i) $3 x>6$ or $-6>-3 x$	M1	
$x>2$ or $2<x$	A1	No marks for use of " $=$ ", unless finally replaced to give $x>2$ then award M1 A1. If MO then SC1 for $x>\frac{8}{3}$
(c)(ii) Open circle at 2 with arrow right	B1	STRICT FT 'their (c)(i)' provided an inequality Accept any unambiguous notation; arrow could just be a line but must not clearly terminate unless this follows through from part (c)(i); mark intent
	(8)	
3.*		
Arc (of circle) centre C radius $6 \mathrm{~cm} \pm 2 \mathrm{~mm}$	B1	
Correct perpendicular bisector construction with appropriate arcs	B2	
Correct area shaded or indicated	B1	Award B1 for appropriate arcs and no line or line outside of tolerance ie no arcs no marks FT provided a closed region bounded by an attempt at a perpendicular bisector, with or without arcs, and the arc of a circle centre C
	(4)	

Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
(a) $\binom{-6}{20}$	B2	B1 for each element or for ($3 \mathbf{q}=)\binom{-12}{21}$ or equivalent seen or for $\left(\frac{-6}{20}\right)$ or for ${ }_{20}^{-6}$ or for $\frac{-6}{20}$
$\begin{aligned} & \text { (b) } 6-4 m=10 \text { or for }\binom{6}{-1}+\binom{4}{-7}=\binom{10}{-8} \text { or } \\ & \binom{6}{-1}-\binom{-4}{7}=\binom{10}{-8} \\ & m=-1 \\ & n=-8 \end{aligned}$	M1 A1 B1	FT $-1+7 m$ for 'their derived m '
	(5)	
5.* (Riley, more than £20: Sent separately, Insurance $£ 750$ each) Cost $£ 26$ seen or (Sent together, Insurance £1500) Cost $£ 22$ seen (James, less than £20: Sent together, Insurance £1500) Cost $£ 17.50$ seen	E1	Not from wrong working
Valid statement or example using limit of accuracy. e.g. 'The masses could both be less than 1250 g ', 'One laptop could weigh 1230 g and the other 1250 g ' 'They could have a total mass of 2460^{\prime} One valid assumption: 'Laptops can be sent separately' 'Laptops can be sent together' 'Packaging does not increase the mass to more than 2500 g '	E1	For recognising that the limit of accuracy has an impact on the problem; allow for a total mass between 2450 and 2550 or individual masses between 1225 and 1275 Appropriately stated; allow embedded statements eg 'If they are sent together then...' or 'If they are sent separately then .. ' or 'If both laptops weigh less than 1250 g then ...' or 'Sent together...'
	(4)	
6. (a) ${ }^{*}$	B2	B1 for 12 in intersection on Venn diagram or for any 2 correct entries
$(b)^{*} \frac{12}{20}$ or equivalent	B1	ISW FT 'their 12 ' provided 'their 12 ' <20
(c) $\frac{1}{13}$	B2	FT 'their 1 ' and 'their 13 ' provided their 1 ' < 'their 13' B1 for denominator of 13 or 'their 13 ' or numerator of 1 or 'their 1 ' provided the denominator < 20
	(5)	

Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
7. $\begin{array}{ll} 9 x-5=p(8+y) & \text { or } 9 x=8 p+p y+5 \\ \frac{9 x-5}{p}=8+y & \text { or } 9 x-5-8 p=p y \\ y=\frac{9 x-5}{p}-8 & \text { or } y=\frac{9 x-5-8 p}{p} \end{array}$	B1 B1 B1	FT until 2nd error FT FT Implies previous B2. Mark final answer.
	(3)	
8. $(1-0.04) \div 6$ seen or implied or $0.04+$ prop lime +5 prop lime $=1$ or 0.96 seen $[(1-0.04) \div 6] \times 5 \text { or } 0.16(\times 5)$ (prop black =) 0.8(0) or equivalent	M1 M1 A1	Accept in any form e.g. $6 x=0.96$ or $0.04+x+5 x=1$ 0.16 implies M1 M1 May be in steps CAO
	(3)	
9. (a) (pressure $=$) $32000 \div(4 \times 10)$ $800\left(\mathrm{~N} / \mathrm{m}^{2}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	For a dimensionally correct calculation
(b) (area of one foot =) $450 \div 50$	M1	
$9\left(\mathrm{~cm}^{2}\right)$ seen or implied	A1	Implies M1
```(area of 4 feet =) 4 4 9 (= 36 cm}\mp@subsup{}{}{2} or or for 54\div4(= 13.5 N)```	B1	Multiplies, may be seen later 'their 36'
(pressure in $\mathrm{N} / \mathrm{cm}^{2}=$ ) $54 \div 36$ or $13.5 \div 9$ or equivalent   $1.5\left(\mathrm{~N} / \mathrm{cm}^{2}\right)$ or equivalent	M1   A1	Allow $54 \div 9$   FT 'their $4 \times 9$ ' or 'their $1800 \div 50$ ' CAO
		Alternative method for first three marks:     (volume of 4 legs $=450 \times 4$ M1    $1800\left(\mathrm{~cm}^{3}\right)$ seen or implied A1    $1800 \div 50\left(=36 \mathrm{~cm}^{2}\right)$ $B 1$
(c) (i)   Any valid assumption   e.g. 'The leg of the table is a prism' or 'The leg is not tapered' or 'The legs are all supporting an equal weight' or 'The leg has a uniform cross-section.' or 'The leg is a cuboid.'	E1	Allow eg 'I assumed that there was nothing on top of the table' or 'All table legs have the same volume'   Allow an assumption they clearly made in (b) eg 'The base of the table leg is a square.'
(c)(ii)   Any valid effect based on their stated assumption   e.g. If the area (of the foot of the table) were smaller the pressure of the table would be greater' or 'The pressure would be different'	E1	Allow eg 'If there were something on top of the table the pressure would be greater'.
	(9)	

\begin{tabular}{|c|c|c|}
\hline Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier \& Mark \& Comment \\
\hline \begin{tabular}{l}
10. \\
(a) (exterior angle \(=) \frac{360}{8}\) or \(45 \times 8=360\) (interior angle sum =) \(6 \times 180\) (interior angle \(=\) ) \(180-\frac{360}{8} \quad(=135)\) or \(\frac{6 \times 180}{8} \quad(=135)\)
\end{tabular} \& M1 \& \begin{tabular}{l}
Accept equivalent methods \\
Do not allow \(1080 \div 8=135\) only, there must be evidence to support 1080 \\
Allow SC2 \\
for \\
(exterior angle is) \(180-135=45\) \\
and (exterior angle is) \(360 \div 8=45\) \\
or for \\
exterior angle sum is 360 oe \\
(exterior angle is) \(180-135=45\) \\
\(45 \times 8=360\)
\end{tabular} \\
\hline \begin{tabular}{l}
(b)
\[
\begin{aligned}
\& y+180-x+180-x+135=360 \text { or } \\
\& x=\frac{y}{2}+\frac{135}{2} \text { or } \frac{y}{2}+180-x+\frac{135}{2}=180
\end{aligned}
\] \\
Convincing working leading to \(y=2 x-135\) \\
One correct reason \\
e.g. Angles on a straight line (add up to \(180^{\circ}\) ), Angle sum of a quadrilateral \(\left(=360^{\circ}\right)\), Symmetry of kite or equivalent
\end{tabular} \& M1 \& \begin{tabular}{l}
Accept in any correct form \\
Given answer obtained without any wrong working seen \\
If M0 then award SC1 for verification that
\[
\begin{aligned}
\& y=2 x-135 \text { leads to eg } \\
\& 2 x-135+2(180-x)+135=360
\end{aligned}
\] \\
Allow for one correct statement Stated appropriately \\
NB SC1 E1 is possible
\end{tabular} \\
\hline \& (5) \& \\
\hline \begin{tabular}{l}
11. \\
Sight of 45.5 cm \\
60.5 cm and \\
115 cm or 1.15 m \\
\(115-45.5-60.5\) seen or implied \\
9 cm
\end{tabular} \& B2
M1

A1 \& | If units are given they must be correct. |
| :--- |
| Award B1 for any 1 correct. |
| FT 'their 45.5, 60.5 and 115 ' providing all are in the same units, 'their 45.5 ' $>45$, |
| 'their 60.5' > 60 and 'their 115 ' <120 and greater than 'their 45.5 $+60.5^{\prime}$ |
| May be in steps |
| CAO; not from wrong working | <br>

\hline \& (4) \& <br>
\hline
\end{tabular}

Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
12.   (a) $0.6,0.8,0.7,1.2,0.2$	B1	
(b) Vertical axis correct and labelled; no gaps between bars   Fully correct histogram	M1	FT candidate's frequency density if table completed incorrectly but the idea of frequency density as frequency $\div$ class width is used,   Histogram must be attempted   FT   If M0 then SC1 if correct but not labelled
$\text { (c) } \frac{5}{32}$	B2	B1 for $\frac{0.2 \times 25}{32}$ or $\frac{1}{32}\left(\frac{5}{6} \times 6\right)$ or equivalent or for ' $\frac{27}{32}$ lasted for less than 35 minutes' or equivalent or for 5 seen
(d) $0.8 \times 5+0.4 \times 5+0.9 \times 10+0.5 \times 10$ seen or implied $20$	M1   A1	$4+2+9+5$
(e) Selection of one of the months with a valid supporting comment.   e.g.   'April as they were too busy working to chat' or 'April as no time for long calls' or 'April as the calls were shorter'.   or   'March as they needed time to talk about revision' or 'March as they needed to talk about how the exams went'.	E1	
	(8)	
13.   (a) $\begin{aligned} & \left(\left(\frac{49}{4}\right)^{\frac{1}{2}}=\right) \frac{7}{2} \text { or } 3.5 \text { or } 3 \frac{1}{2}, \\ & \left(125^{0}=\right) 1, \quad\left(8^{\frac{2}{3}}=\right) 4, \\ & \left(0.75^{-1}=\right) \frac{4}{3} \text { or } 1 \frac{1}{3} \end{aligned}$	B3	All 4 correct   Do not accept $\frac{1}{0.75}$ or 1.3 but allow correct recurring notation or 1.33(...)   Award B2 for 3 correct.   Award B1 for 1 or 2 correct.
(b) $\sqrt[4]{100}=\sqrt{10}$ or $3^{4}=81$ or $4^{4}=256$ 3 and 4	M1 A1	Accept any valid method   Not from wrong working Accept unsupported 3 and 4 for 2 marks
	(5)	


Eduqas Summer 2017   GCSE (9-1) Mathematics   Component 1: Higher Tier	Mark	Comment
14.   (a) (gradient of $P Q=) \frac{q--4}{7-1}$ seen or   implied   $\frac{q+4}{6}=\frac{5}{3}$ seen or implied	B1	

\begin{tabular}{|c|c|c|}
\hline Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier \& Mark \& Comment \\
\hline \begin{tabular}{l}
15.
\[
\text { (a) (i) } S \hat{O} Q=108^{\circ}
\] \\
Angle at centre (is twice angle at circumference)
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { E1 }
\end{aligned}
\] \& Do not allow eg 'Angle SOQ = 2Angle SPQ' \\
\hline (a)(ii) \(S \hat{R} Q=126^{\circ}\) \& B1 \& Ignore any reason if stated \\
\hline \begin{tabular}{l}
(a)(iii)
\[
(O \hat{Q} R=) \frac{360-(108+126)}{3}
\]
\[
(O \hat{S} R=) \frac{360-(108+126)}{3} \times 2
\] \\
\(84^{\circ}\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
or equivalent, \\
FT 'their 108' and 'their 126' \\
May be seen or implied in further work; may be in steps \\
FT 'their 108' and 'their 126' \\
CAO
\end{tabular} \\
\hline (b) Any two of \(C \widehat{D} B=C \hat{A} B\) (same segment) or equivalent \(A \hat{C} D=A \widehat{B} D\) (same segment) or equivalent \(D \widehat{E} C=A \hat{E} B\) (vertically opposite) \& B2 \& B 1 for \(C \widehat{D} B=C \hat{A} B\) same segment or equivalent or for \(A \hat{C} D=A \widehat{B} D\) same segment or equivalent or for two pairs of angles eg \(C \widehat{D} B=C \hat{A} B, A \hat{C} D=A \widehat{B} D\) with no reason/invalid reasons stated \\
\hline Correct explanation e.g. 'The triangles have the same angles (and so are similar).' \& E1

(9) \& | May be stated or implied earlier. |
| :--- |
| Alternative method: |
| $\mathrm{AE} \times \mathrm{EC}=\mathrm{BE} \times \mathrm{ED}$ |
| or states 'intersecting chords theorem' B1 |
| $\frac{A E}{D E}=\frac{B E}{C E}$ or equivalent ratios $B 1$ |
| Correct explanation e.g. ‘Corresponding sides are in the same ratio so the triangles are similar.' |
| or eg extending the intersecting chords theorem $\frac{A E}{D E}=\frac{B E}{C E}=\frac{A B}{D C}$ (so the triangles are similar) E1 | <br>

\hline
\end{tabular}

Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
16.   (a)(i) $\frac{15}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ or $\frac{15 \sqrt{5}}{5}$ or $\frac{3 \times 5}{\sqrt{5}}$ $3 \sqrt{5}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	implies M1
$\begin{aligned} & \text { (a)(ii) } 10 \sqrt{3}-3 \sqrt{3} \\ & 7 \sqrt{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
(b) Expands $a b-a \sqrt{2}+b \sqrt{2}-\sqrt{2} \times \sqrt{2}$   Identifies $a b$ as an integer and $\sqrt{2} \times \sqrt{2}$ as an integer   (Not correct as ) an integer when $a=b$ or equivalent	M1   M1   A1	Allow one error in expansion; may be in a grid   May be implied eg $a b-2$ is an integer   $a=b$ must be seen or implied at some point   Alternative method 1   Stating eg 'difference of two squares if $a=b$ '   Concludes integer   Alternative method 2   Uses equal numerical values of $a$ and $b$ and expands with at most one error eg $(7+\sqrt{2})(7-\sqrt{2})=7 \times 7-7 \sqrt{2}+7 \sqrt{2}-\sqrt{2} \times \sqrt{2}$   M2   Or M1 for using numerical unequal values of $a$ and $b$ expands with at most one error Or B1 for stating that $a$ and $b$ must be the same   Correct numerical working and integer answer A1
	(7)	


Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
17.   Radius of outer circle $=13$ or half the chord = 12 $(\text { radius inner circle })^{2}+12^{2}=13^{2}$   $r=5$ seen or implied $x^{2}+y^{2}=5^{2}$	B1   M1   A1   A1	May be on diagram   FT 'their derived 5'   If zero scored allow SC1 for $12^{2}+5^{2}=13^{2} \text { or } 12^{2}+5^{2}=169 \text { only }$
	(4)	
18 (a) Reflection in $x$-axis   Correct coordinates seen or scale marked	B1   B1	Ignore coordinates for this mark; vertex must be on the positive $x$-axis
(b) Translation through $\binom{0}{k}$ where $k<0$ Correct coordinates seen or scale marked	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Ignore coordinates for this mark; vertex must be in 4th quadrant;
	(4)	


Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
19. $\begin{aligned} & \text { (a) } R \propto \sqrt{x} \text { or } R=k \sqrt{x} \\ & 900=k \sqrt{81} \\ & k=100 \\ & (R=) 100 \sqrt{9} \\ & (R=) 300\left(\mathrm{~cm}^{3} \text { per min }\right) \end{aligned}$	M1   M1   A1   M1   A1	Implies first M1   FT 'their 100 '   FT
		Alternative method using proportions Sight of $\frac{900}{\sqrt{81}}$ or $\sqrt{81}$ (:) 900   Could be implied in later working B1 $\frac{900}{\sqrt{81}}=\frac{R}{\sqrt{9}}$ or compares $\sqrt{81}$ or 9 (:) 900 with $\sqrt{9}$ or 3 (:) $300 \quad$ M1 $\frac{900}{\sqrt{81}} \times \sqrt{9}=R$ seen or implied M1 $100 \times \sqrt{9}(=R)$ seen or implied M1 $(R=) 300\left(\mathrm{~cm}^{3}\right.$ per min) A1
(b) $400=100 \sqrt{x}$ or $\frac{1}{100}=\frac{\sqrt{x}}{400}$ or equivalent or $(\sqrt{x}=) \frac{400}{100}$ or $(\sqrt{x}=) 4$ $(x=) 16$ (cm)	M1   A1	FT 'their 100'   Not from wrong working
	(7)	
20.   (a) $\begin{aligned} & g(9)\left(=9^{2}-1\right)=80 \\ & h(80)=240 \text { or } h g(9)=240 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	or for $h g(x)=3\left(x^{2}-1\right)$   FT 'their $9^{2}-1$ ' or 'their $3\left(x^{2}-1\right)$ ',
(b) $h(2 x)=3(2 x)$ $\begin{aligned} & g h(2 x)=(6 x)^{2}-1 \\ & g h(2 x)=36 x^{2}-1 \end{aligned}$	M1   M1   A1	or for $g h(x)=(3 x)^{2}-1$   FT 'their $g h(x)$ ' or 'their $h(2 x)^{\prime}$ CAO
	(5)	


Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
21.   (a) $20-x$	B1	Accept $\frac{48 x}{160+2 x}$
$\frac{\text { (b)(i) }}{\frac{160}{x}+2=\frac{48}{20-x} \text { or } \frac{48 x}{160+2 x}=20-x \text { or }}$   equivalent	M2	FT 'their two-term $20-x$ ' for M2   M1 for $\frac{48}{20-x}$   or   M1 for $\frac{160}{x}+2=$ 'their $\frac{48}{20-x}$ ' or equivalent   if 'their $20-x$ ' is not two-term   'their $\frac{48}{20-x}$ ' must be in terms of $x$
Attempts to clear both of the fractions or attempts to use a common denominator on left hand side and cross multiply $160(20-x)+2 x(20-x)=48 x$ or equivalent	M1	FT 'their two-term 20-x'
Expanding the brackets $3200-160 x+40 x-2 x^{2}=48 x$   or equivalent	M1	FT 'their two-term 20-x'
Collects terms and correctly simplifies to $x^{2}+84 x-1600=0$	A1	Convincingly shown as answer given
$\begin{aligned} & \text { (b) (ii) } \\ & (x+100)(x-16) \end{aligned}$	M1	Correct factorisation or correct application of the quadratic formula as far as $b^{2}-4 a c$ simplified;   Solution of equation may be seen in part (b)(i), allow the marks if this is the case
$x=16$ or $x=-100$	A1	
[motorbike used] 4 [litres]	A1	No FT on part (a) here
	(9)	

