Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

C300UA0-1

TUESDAY, 1 NOVEMBER 2022 – MORNING

MATHEMATICS – Component 1 Non-Calculator Mathematics HIGHER TIER

2 hours 15 minutes

ADDITIONAL MATERIALS

An additional formulae sheet.

The use of a calculator is not permitted in this examination.

A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

VOV22C300UA0101

For Ex	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	3	
2.	7	
3.	4	
4.	5	
5.	6	
6.	3	
7.	7	
8.	5	
9.	6	
10.	7	
11.	4	
12.	4	
13.	6	
14.	9	
15.	6	
16.	4	
17.	5	
18.	5	
19.	6	
20.	5	
21.	5	
22.	3	
23.	5	
Total	120	

Formula list

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a sphere = $\frac{4}{3}\pi r^3$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Kinematics formulae

Where a is constant acceleration, u is initial velocity, v is final velocity, s is displacement from the position when t=0 and t is time taken:

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

C300UA01 03

(a)	Find the	e next te	rm of th	e tollov	ving Fib	onaccı-	type se	quence) .	[1]
		2,	3,	5,	8,	13,	21,	34,		
(b)	Find the	nth ter	n of the	followi	ng sequ	uence.				[2]
(b)	Find the	e nth teri			ng sequ		24,			[2]
(b)	Find the	nth ter					24,			[2]
(b)	Find the	e nth ter					24,			[2]
(b)	Find the	e nth ter					24,			[2]

2. (a) Tick (\checkmark) the **two** correct statements about $3xy(y+2) \equiv 3xy^2 + 6xy$.

[2]

lt	is	an	equation.

It is true for all values of x and y.

It is an identity.

It is only true for certain values of x and y.

It is an inequality.

It is true for only one value of x and one value of y.

(b) In this part of the question all lengths are in centimetres.

The diagram shows a prism.

The cross-section of the prism is a triangle with height x and base 3x.

The volume of the prism is 216 cm³.

Use an algebraic method to find the height of the triangle.	[5]
	••••••
	······································
	······•
	· · · · · ·
	· · · · · · ·
	······•

~	
0	
⋖	
\supset	
0	
8	
3	К

(a)	Mary and Paul run 100 metres.	
	Mary's time is between 14 and 15 seconds inclusive. Paul's time is between 12 and 13 seconds inclusive.	
	Complete the inequality to show the least and greatest times of these two runners.	possible difference between the [2]
	\leqslant time difference \leqslant	
•••••		
·····		
(D)	He is taking a van and a small trailer. He knows:	
	The ferry company uses the following rules for the length	-
		Diagram not drawn to scale
	C C	Name of the second
mall tr	trailer: maximum length 2 m	gth 6 m
	Use lengths to give one example to show how Peter m to show how Peter may not be correct.	ay be correct, and one example [2]
	May be correct	
•••••	May not be correct	
	May not be correct	
	(b)	Mary's time is between 14 and 15 seconds inclusive. Paul's time is between 12 and 13 seconds inclusive. Complete the inequality to show the least and greatest times of these two runners. ≼ time difference ≼ time difference ≼ time difference ≼ time difference ≼ time difference ≼ time difference ≼ time difference ≼ was time difference ≼ the is taking a van and a small trailer. He knows: the van is 590 centimetres long, correct to the new the trailer is 200 centimetres long, correct to the The ferry company uses the following rules for the length of the length

© WJEC CBAC Ltd. (C300UA0-1) Turn over.

(a	a)	Work out $(6 \times 10^5) \div 20$.	
,	,	Work out $(6 \times 10^5) \div 20$. Give your answer in standard form.	[2]
	•••••		
(b	o)	At midday, the volume of water flowing over a waterfall is 3×10^8 litres per minute.	
		At midday, what is the volume of water flowing over the waterfall in litres per hour? Give your answer in standard form.	[3]
••••	•••••		

5.	A gla	ss of water is placed on a small table. The table stands on horizontal	ground.
	(a)	The total mass of the table and the glass of water is 9.6 kg.	
		You are given the ratios,	
		mass of table: mass of glass of water = 11:1, mass of empty glass: mass of water = 3:5.	Diagram not drawn to scale
		What is the mass of the empty glass?	[3]
	•••••		

The base of the table has an area of 1600 cm². Some books are also placed on the table.

The books, glass of water and table exert a pressure of 0.1 N/cm² on the ground.

Calculate the force exerted on the ground by the books, glass of water and table.

Assume that the whole of the base of the table is in contact with the ground.

[2]

Turn over.

							 • • • •	 	 	 	 • • • •		 						 	 			 	 		• • •		 		 	 • • •	 • • •	 		• • •	 	 ··· •
							 	 	 	 	 		 						 	 	٠		 	 				 		 	 	 	 			 	 · · ·
• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	 • • •	 	 	 	 • • • •	• • •	 	• • •	• • •	• • •	• • •	• • • •	 • • • •	 	• • •	• • • •	 • • •	 	• • •	• • •	• • •	 	• • •	 ٠	 ٠	 • • •	 • • • •	• • • •	• • •	 	

(c) In fact, the assumption made in part (b) is incorrect. Part of the base of the table is not in contact with the ground.

Describe how this changes your answer to part (b).	[1]
	•

C300UA

10 6. Sale Reduced price £1008 40% off In a sale, jewellery is reduced in price by 40%. The price of a ring is reduced to £1008 in the sale. What was the price of the ring before the sale? [3]

Examiner only

7.	(a)	Expand and simplify $(3x-4)(5x+7)$.	[3]
	(b)	Factorise each of the following. (i) $2x^2y + 12xy^2$	[3]
		(ii) $x^2 - 64$	[1]

8.

(a)	Describe the single transformation that maps triangle <i>A</i> to triangle <i>B</i> .	[3]
•••••		

(b)	Triangle C was mapped to triangle A using an enlargement, scale factor	$\frac{1}{3}$, centre (5, 1).
	Draw triangle C on the grid above.	[2]

[3]

9. Fifty people were asked which languages they speak from English, French and Polish.

Of these 50 people:

- 8 speak all 3 languages
- 20 speak English only
- 1 speaks French only
- no-one speaks Polish only
- 12 speak English and French but not Polish
- 10 speak French and Polish
- 3 do not speak any of these languages.
- (a) Complete the Venn diagram to show this information. The universal set, \mathbf{E} , contains all 50 people.

(b)	One person is chosen at random. Find the probability that this person does not speak French.	[1]
(c)	One person is chosen at random from those who speak English. Find the probability that this person speaks French or Polish but not both.	[2]

© WJEC CBAC Ltd. (C300UA0-1) Turn over.

10.	(2)	Simplify each of the following.		Examiner only
10.	(a)	(i) $\frac{x^9}{2x^5}$	[1]	
		(ii) $\left(\frac{x}{\sqrt{5}}\right)^{-2}$	[2]	
		(43)		
	(b)	Jamal says,		
		"For all positive real numbers a and b , $\sqrt{a+b} = \sqrt{a} + \sqrt{b}$." Give an example to prove that Jamal is incorrect.	[1]	
	•••••			

(c)	(i) 	$\sqrt[4]{y} = y^x$ Write down the value of x .	[1]
	(ii)	Evaluate $32^{\frac{3}{5}}$.	[2]
11. Rea Give	ırrange e your a	$4x = \sqrt[3]{7y + xy}$ to make y the subject. answer in its simplest form.	[4]
11. Rea	e your a	answer in its simplest form.	
Give	e your a	answer in its simplest form.	

12. Diagram not drawn to scale The volume of a hemisphere is $18000 \, \pi \, \text{cm}^3$. [4] Find the radius of the hemisphere.

© WJEC CBAC Ltd.

(C300UA0-1)

Examiner only

	17	
Asha is	taking part in a school cross-country race.	
She:		
• r	uns x km in 8 minutes, then	
• W	ralks 0·2 km in 2 minutes, then	
• r	uns 1⋅8 km in 10 minutes.	
Asha's a	average speed for the whole race is $\frac{5x+2}{60}$ kilometres per minute.	
Find the	e value of x and hence write the distance that she runs as a fraction of the total e.	
Give yo	ur answer in its simplest form.	[6]
•••••		· · · · · · · · · · · · · · · · · · ·
• • • • • • • • • • • • • • • • • • • •		
•••••		
•••••		•••••••••••••••••••••••••••••••••••••••
•••••		
•••••		· · · · · · · · · · · · · · · · · · ·
•••••		
		············
		· · · · · · · · · · · · · · · · · · ·
•••••		· · · · · · · · · · · · · · · · · · ·
		············
		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
		

18 **14.** The histogram below represents the greatest speed, v mph, of a car when driven by 50 drivers on a section of racetrack on Monday. Frequency Monda density 2.0 1.5 1.0 0.5 60 80 90 70 Greatest speed v (mph) (a) Calculate an estimate of the percentage of the 50 drivers who drove at a greatest speed of 75 mph or more on this section of racetrack. [3] Use the histogram to complete this cumulative frequency table. [2] Greatest speed, *v* ≤ 50 *v* ≤ 60 $v \leq 65$ $v \leq 70$ $v \leq 80$ $v \leq 90$ *v* (mph) Cumulative 0 50 frequency

Examiner

only

© WJEC CBAC Ltd.

(C300UA0-1)

(c) The cumulative frequency diagram below represents the greatest speed, v mph, of the same car when driven by 50 different drivers on the same section of racetrack on Tuesday.

- (i) On the grid above, draw the cumulative frequency diagram to represent the results of Monday's drivers. [2]
- (ii) On one of the days, many of the drivers were racing drivers.

On which day was this likely to be?
Give numerical evidence and explain your decision.

[2]

•••••••••••••••••••••••••••••••	

15.	Zofia sells two different mixes of seed, Type A and Type B. Each mix contains both wildflower
	seed and grass seed.

The table shows information about the percentage of seed in each mix and the maximum amount of each seed Zofia has available.

	Type A	Type B	Maximum available (kg)
Wild-flower seed	80%	90%	36
Grass seed	20%	10%	6
Total mass (kg)	X	y	

		otal mass (kg)	X	<u>y</u>			
(a)	You are given that $x > 0$ and $y > 0$.						
	(i)	Use the informa	ation about wild-	flower seed to sh	ow that $8x + 9y \le 360$.		
	 (ii)	Find an inequal	ity to represent	the information al	oout grass seed.		
b)	For	each kilogram tha £3 per kilogram £2.50 per kilogr	of Type A	a makes a profit o	of:		
	She	sells her seed mi		ograms only.			
	She	makes the greate	est profit from th	is seed when she	e sells 18 kg of Type A.		
		he graph paper o sible profit.	pposite, draw ar	n appropriate reg	ion and find Zofia's greatest	t	
	•••••					•••••	
	•••••						

16.

Diagram not drawn to scale

P, Q, R and S are points on the circumference of a circle with centre O. PR is a diameter of the circle. PRS is 76° .

•	•			•	_	
				^		
F	Fil	nd	S	Ωl	₹.	

You must give a reason for each step of your working.	[4]
SQ̂R =°	

	A 8 cm Shape A is similar to shape B. The area of shape A is 128 cm ² . Calculate the area of shape B.	В	10 cm	Diagram not drawn to sca	t le
C	Calculate the area of shape <i>B</i> .				
					[3]
S	Shape A is the uniform cross-section Shape B is the uniform cross-section	of prism A. of prism B.			
F	Prism A and prism B are similar.				
	Vrite the following ratio in its simplest olume of prism <i>A</i> : volume of prism <i>B</i>				[2]

Turn over. © WJEC CBAC Ltd. (C300UA0-1)

18.	(a)	Write $\frac{9}{55}$ as a recurring decimal.	[1]
	(b)	Write 3·712 as a fraction.	[2]
	(c)	Use the fact that $0.0\dot{5} = \frac{1}{18}$ to write $0.2\dot{5}$ as a fraction.	[2]
	•••••		

It is k V is \S	snown that V is directly proportional to 3^t . 9 when t is 4.	Exe
(a)	Find a formula for V in terms of t .	[3]
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
(b)	(i) Find the value of V when $t = 0$.	[1]
	(ii) Find the value of t when $V = 27$.	[2]

20.	(a)	Use the digits 1, 2, 3, 4 and 5. How many different 3-digit whole numbers can be made, if each digit can be used more than once?	Exan on
	<u></u>		
	(b)	What is the probability that a 3-digit whole number made using the digits 1, 2, 3, 4 and 5 has no repeated digit? [3]	
	<u></u>		

	Examiner only
[5]	
•••••••	
······································	
•••••••••••••••••••••••••••••••••••••••	
···········	
············	
······································	
••••••	
· · · · · · · · · · · ·	
	l

Write $7 - \sqrt{27} + \frac{44}{5 + \sqrt{3}}$ in the form $p + q\sqrt{3}$.	

		Examiner
22.	A box contains 10 coloured counters. 6 are red, 3 are blue, 1 is pink.	only
	They are identical apart from their colour.	
	Fran takes a counter at random and keeps it. Jon takes a counter at random from those that remain.	
	Find the probability that one of these counters is red and the other is blue. [3]	

Examin	е
only	

23.	(a)	A curve has	equation	y = 4 -	$(x-3)^2$.
-----	-----	-------------	----------	---------	-------------

Circle the correct description of the point (3, 4) on this curve.

[1]

y-intercept maximum point minimum point root *x*-intercept

(b) The diagram shows a sketch of the curve $y = (x-5)^2 + a$

Diagram not drawn to scale

The minimum point of the curve is (5, -16).

Find the x-coordinates of the points where the curve cuts the x-axis. You must show all your working.

[4]

END OF PAPER

© WJEC CBAC Ltd. (C300UA0-1) Turn over.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examir only
	(,)	1
		.]
	L	
		<u> </u>

