

GCSE MARKING SCHEME

AUTUMN 2022

GCSE
MATHEMATICS – COMPONENT 1
(HIGHER TIER)
C300UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE MATHEMATICS

AUTUMN 2022 MARK SCHEME

Component 1: Higher Tier	Mark	Comment
1.*(a)		
55	B1	
1.(b) $5n-1$ or $-1+5n$	B2	 Mark final answer B1 for: 5n + k, where k ≠ -1 a correct answer seen and then spoiled. an unsimplified expression which would lead to 5n -1 Allow the use of other variables for n for B1 or B2
	(3)	Allow the use of other variables for 77 for B1 of B2
2.*(a)	(3)	
Second and third statements indicated and no others	B2	Award B1 for one of the following: One correct statement and up to one incorrect statement indicated Two correct statements and exactly one incorrect statement indicated
2.(b)		May be done in parts
(Area of cross-section =) $1/2 \times 3x \times x$	M1	Accept ½ base x height oe
(Volume =) $\frac{1}{2} \times 3x \times x \times 4$	M1	FT 'their $\frac{1}{2} \times 3x \times x' \times 4$, provided at least two
	l	terms in x.
$\frac{1}{2} \times 3x \times x \times 4 = 216$ oe	A1	CAO
$x^2 = 216 \times 2 \div 4 \div 3 (= 36)$	M1 A1	FT 'their $k \times x^2 = 216$ Mark final answer.
6 (cm) Alternative method	A1	FT Final 2 marks can be awarded if trials used on an equation of the form 'their $k' \times x^2 = 216$ to find a correct or correct FT answer. If x^2 is a square number, x must be given as a whole number. Otherwise, it may be written as an unsimplified surd.
(Area of cross-section =) 216 ÷ 4 (=54)	B1	
(Area of cross-section =) $\frac{1}{2} \times 3x \times x$	M1	Accept ½ base x height oe
$\frac{1}{2} \times 3x \times x = 54$ oe,	A1	CAO
$x^2 = 54 \times 2 \div 3 (= 36)$	M1	FT 'their $k' \times x^2 =$ 'their 54'
6 (cm)	A1	Mark final answer.
		FT Final 2 marks can be awarded if trials used on an equation of the form 'their $k' \times x^2$ = 'their 54' to find a correct or correct FT answer If x^2 is a square number, x must be given as a whole number. Otherwise, it may be written as an unsimplified surd.
		If no marks award SC3 for a complete correct method using trials leading to an answer of 6 OR SC2 for a correct trial with height > 3, e.g. $\frac{1}{2} \times 15 \times 5 \times 4$ (and comparison with 216) si OR a correct trial with height > 3. e.g. $\frac{1}{2} \times 15 \times 5$ and comparison with 54 si
	(7)	

_	1	
3.*(a) 1 ≤ time difference ≤ 3	B2	Not from wrong working
		B1 for one end correct in the inequality or for sight of both values
3.(b)		Accept a statement such as 'The van is always less than 6 m long/the maximum length acceptable' stated once only; may be written anywhere. If lengths are given, they must be within the appropriate limits.
Valid example for may be correct e.g. Van 590 cm AND trailer 198 cm	E1	For the van accept any statement such as 'The van is always less than 6 m long/the maximum length acceptable' or any values satisfying: 585 cm ≤ length of the van < 595 cm AND 195 cm ≤ length of the trailer ≤ 200 cm Allow e.g. 'The trailer could be less than 200 (cm).' Example might use the values given in the question (590 cm and 200 cm) and not consider the values are rounded to the nearest 10 cm.
Valid example for may not be correct e.g. (Van 590 cm and) trailer 201 cm	E1	(For the van accept any statement such as 'The van is always less than 6 m long' or any values satisfying: 585 cm ≤ length of the van < 595 cm AND) 200 cm < length of the trailer < 205 cm Allow e.g. 'The trailer could be more than 200 (cm)/the maximum length acceptable' or 'the length of the trailer could be 205 (cm)'.
	(4)	
4.*(a) $600000 \div 20$ or $(6 \times 10^5) \div (2 \times 10)$ 3×10^4	M1 A1	Award M1 A0 for any one of the following: • 30 000 • 0.3 × 10 ⁵
		0.3 × 10°
4.(b) 60 × 3 × 10 ⁸ oe	M1	e.g. 300 000 000 × 60
180 × 10 ⁸ or 18 000 000 000 oe	A1	CAO
$1.8(0) \times 10^{10}$ (litres per hour)	A1	FT 'their $60 \times 3 \times 10^8$ ', provided M1 awarded.
		If no marks, award SC1 for 5×10^6
	(5)	
5.*(a)		
$9.6 \div 12 (= 0.8)$ $0.8 \div 8 \times 3$	M1 M1	FT 'their 0.8' including place value error from conversion of kg to g
0.3 (kg) or 300g	A1	CAO
Alternative method 88 : 3 : 5	B1	
$\frac{3}{88+3+5} \times 9.6$	М1	
0.3 (kg) or 300g	A1	CAO
5.(b) (Total force =) 1600 × 0.1 160 (N)	M1 A1	
		,

Valid impact e.g. 'The force would be less' E1 Ignore any extraneous comments e.g. 'The pressure would increase, and the force will be lower'. (6) 6.*		-1	
6.* $\frac{1008}{60} \times 100 \text{or} \frac{1008}{0.6(0)}$ $or \frac{1008}{6} \times 10 \text{or} \frac{10080}{6} \text{oe}$ $(£) 1680(.00)$ $and 15x^2 + 21x - 20x - 28$ $15x^2 + x - 28$ $and 15x^2 + x - 28$ $and 2xy(x + 6y)$ $and 2xy(x + 6y)$ $and 3xy(x + 6y)$ $and 3x$		E1	'The pressure would increase, and the force will
$\frac{1008}{60} \times 100 \text{or} \frac{1008}{0.6(0)}$ $or \frac{1008}{6} \times 10 \text{or} \frac{10080}{6} \text{ oe}$ $\underbrace{(\pounds)1680(.00)}$ $7. ^*(a)$ $15x^2 + 21x - 20x - 28$ $15x^2 + x + x + x + x + x + x + x + x + x + $		(6)	
B2 B1 for any three terms correct. $mx^2 + x + n$ implies middle two terms correct if not from wrong working Mark final answer. Implies previous B2. FT their expression, provided it is a quadratic with 4 terms to consider and there are like terms to collect. 7.(b)(i) 2xy(x + 6y) B3 Mark final answer. B2 for any one of the following: • A correct answer seen then spoiled • $2x(xy + 6y^2)$ • $2y(x^2 + 6xy)$ • $xy(2x + 12y)$ • $2xy(x + my)$ where $m \neq 0$ or $m \neq 6$ • $2xy(nx + 6y)$ where $n \neq 1$ or $n \neq 0$ B1 for any one of the following: • $2(x^2y + 6xy^2)$ • $x(2xy + 12y^2)$ • $y(2x^2 + 12xy)$ • $2x(xy + my)$ where $m \neq 0$ or $m \neq 6$ • $2x(xy + my)$ where $m \neq 0$ or $m \neq 6$ • $2x(xy + my)$ where $m \neq 0$ or $m \neq 6$ • $2x(xy + my)$ where $m \neq 0$ or $m \neq 6$ • $2x(xy + my)$ where $m \neq 0$ or $m \neq 6$ • $2x(xxy + my)$ where $m \neq 0$ or $m \neq 6$ • $2x(xxy + 6y^2)$ where $m \neq 0$ or $m \neq 6$ • $2x(nxy + 6y^2)$ where $n \neq 1$ or $n \neq 0$ • $2x(nxy + 6y^2)$ where $n \neq 1$ or $n \neq 0$ • $2x(nxy + 6y^2)$ where $n \neq 1$ or $n \neq 0$ • $2x(nxy + 6y^2)$ where $n \neq 1$ or $n \neq 0$ • $2x(nxy + 6y^2)$ where $n \neq 1$ or $n \neq 0$ • $2x(nxy + 6y^2)$ where $n \neq 1$ or $n \neq 0$ • $2x(nxy + 6y^2)$ where $n \neq 1$ or $n \neq 0$ • $2x(nxy + 6y^2)$ where $n \neq 1$ or $n \neq 0$ • $2x(nxy + 6y^2)$ where $n \neq 1$ or $n \neq 0$ • $2x(nxy + 6y^2)$ where $n \neq 1$ or $n \neq 0$ • $2x(nxy + 6y^2)$ where $n \neq 1$ or $n \neq 0$	$\frac{1008}{60} \times 100$ or $\frac{1008}{0.6(0)}$ or $\frac{1008}{6} \times 10$ or $\frac{10080}{6}$ oe $(\mathfrak{E})1680(.00)$	A1	• $\frac{1008}{6}$ (=168) (Calculating 10% of original value) • $\frac{1008}{60}$ (=16.8) (Calculating 1% of original value)
B3 Mark final answer. B2 for any one of the following: • A correct answer seen then spoiled • $2x(xy + 6y^2)$ • $2y(x^2 + 6xy)$ • $xy(2x + 12y)$ • $2xy(x + my)$ where $m \neq 0$ or $m \neq 6$ • $2xy(nx + 6y)$ where $n \neq 1$ or $n \neq 0$ B1 for any one of the following: • $2(x^2y + 6xy^2)$ • $x(2xy + 12y^2)$ • $y(2x^2 + 12xy)$ • $2x(xy + my^2)$ where $m \neq 0$ or $m \neq 6$ • $2y(x^2 + mxy)$ where $m \neq 0$ or $m \neq 6$ • $2y(x^2 + mxy)$ where $m \neq 0$ or $m \neq 6$ • $2y(x^2 + mxy)$ where $m \neq 0$ or $m \neq 6$ • $2y(x^2 + mxy)$ where $m \neq 0$ or $m \neq 6$ • $2y(x^2 + mxy)$ where $m \neq 0$ or $m \neq 6$ • $2y(x^2 + mxy)$ where $m \neq 0$ or $m \neq 6$ • $2y(x^2 + mxy)$ where $m \neq 0$ or $m \neq 6$ • $2y(x^2 + mxy)$ where $m \neq 0$ or $m \neq 0$ • $2y(nx^2 + 6xy)$ where $n \neq 1$ or $n \neq 0$ • $2y(nx^2 + 6xy)$ where $n \neq 1$ or $n \neq 0$ • $2xy(x + 12y)$ where $n \neq 1$ or $n \neq 0$ • $2xy(x + 12y)$ where $n \neq 1$ or $n \neq 0$ • $2xy(x + 12y)$ where $n \neq 1$ or $n \neq 0$ • $2xy(x + 12y)$ where $n \neq 1$ or $n \neq 0$ • $2xy(x + 12y)$ where $n \neq 1$ or $n \neq 0$ • $2xy(x + 12y)$ where $n \neq 1$ or $n \neq 0$	$15x^2 + 21x - 20x - 28$ $15x^2 + x - 28$		$mx^2 + x + n$ implies middle two terms correct if not from wrong working Mark final answer. Implies previous B2. FT their expression, provided it is a quadratic with 4 terms to consider and there are like terms to
(x-8)(x+8) B1	2xy(x+6y)	B3	B2 for any one of the following: • A correct answer seen then spoiled • $2x(xy + 6y^2)$ • $2y(x^2 + 6xy)$ • $xy(2x + 12y)$ • $2xy(x + my)$ where $m \ne 0$ or $m \ne 6$ • $2xy(nx + 6y)$ where $n \ne 1$ or $n \ne 0$ B1 for any one of the following: • $2(x^2y + 6xy^2)$ • $x(2xy + 12y^2)$ • $y(2x^2 + 12xy)$ • $2x(xy + my^2)$ where $m \ne 0$ or $m \ne 6$ • $2y(x^2 + mxy)$ where $m \ne 0$ or $m \ne 6$ • $2x(nxy + 6y^2)$ where $m \ne 0$ or $m \ne 6$ • $2x(nxy + 6y^2)$ where $n \ne 1$ or $n \ne 0$ • $2y(nx^2 + 6xy)$ where $n \ne 1$ or $n \ne 0$ • $2y(nx^2 + 6xy)$ where $n \ne 1$ or $n \ne 0$ • $2xy(nx + 12y)$ where $n \ne 1$ or $n \ne 0$ • $2xy(nx + 12y)$ where $n \ne 1$ or $n \ne 0$
		P1	
	(M 0)(M 10)	(7)	

8.(a) Rotation 90° clockwise or 270° anti-clockwise about (-1, 0)	В3	Must be a single transformation for B3 If B3 not awarded, allow B1 for each correct 'condition', up to B2, from a single transformation or a multi-step transformation e.g. Award B1B1 for 'Centre of rotation (-1, 0)' Award B1B1 for 'Rotation clockwise 90°, and then a translation 1 to the left and 1 down'.
8.(b) Correct triangle with vertices at (-4, 10), (-7, 4), (8, 4)	B2	 B1 for any one of the following: A triangle with 2 correct vertices 3 vertices correctly plotted, but not joined for a correct enlargement from an incorrect centre an enlargement using an different scale factor (≠1) from the centre (5, 1)
9.(a)	(5)	
E 20 12 1 8 2 0 P 3	В3	The 0 entry can be empty or Ø B2 for any 6 or 7 correct or B1 for any 4 or 5 correct
9.(b)		For the numerator:
27/50 ISW or 0.54	B1	FT 20 + 'their 4' + 0 + 3 provided 'their 4' > 0 OR 50 – (12 + 8 + 'their 2' + 1) provided 'their 2' > 0
9.(c) 16 44 ISW	B2	For B2 or B1: FT numerator of 'their 12' + 'their 4' and denominator of 'their 20 + their 12 + their 8 + their 4' or 50 - ('their 0' + 'their 1' + 'their 2' + 'their 3') provided no values are negative and fraction < 1 B1 for denominator of 44 or numerator of 16 provided in a fraction < 1 OR B1 for a correct answer with wrong notation e.g. 16 out of 44 or 16: 44
9.(c) 16 ISW	B2	FT numerator of 'their 12' + 'their 4' and denominator of 'their 20 + their 12 + their 8 + their 4' or 50 – ('their 0' + 'their 1' + 'their 2' + 'their provided no values are negative and fract B1 for denominator of 44 or numerator of provided in a fraction < 1 OR B1 for a correct answer with wrong notation.

10.(a)(i)		
$\frac{x^4}{2}$ or $\frac{1}{2}x^4$ or $0.5x^4$	B1	Mark final answer
10.(a)(ii)		
$\frac{5}{x^2}$ or $5x^{-2}$	B2	Mark final answer
		$(x^2)^{-1}$ $(\sqrt{5})^2$
		B1 for sight of $\left(\frac{x^2}{5}\right)^{-1}$ or $\left(\frac{\sqrt{5}}{x}\right)^2$ oe
10.(b) Use of a counter example e.g.	B1	Accept e.g.
$\sqrt{64+36} = \sqrt{100} = 10$		$\sqrt{1+4} = \sqrt{5}$
$\sqrt{64} + \sqrt{36} = 8 + 6 = 14$		$\sqrt{1} + \sqrt{4} = 1 + 2 = 3$ and $\sqrt{5} < 3$ or $\sqrt{5} \neq 3$
		If a, b and a+b are not all square numbers then
		further explanation is required.
10.(c)(i)		
$\frac{1}{4}$ or 0.25	B1	
10.(c)(ii)		
$2^{3} \text{ or } \sqrt[5]{32768} \text{ or } \left(\sqrt[5]{32}\right)^{3} \text{ or } \sqrt[5]{32^{3}}$	M1	
8	(7)	
11.	(1)	FT expressions of equivalent difficulty until 2nd
Clears the root and simplifies e.g.		error; marks can be awarded in a different order
$64x^3 = 7y + xy \text{ si}$	B2	B1 for $(4x)^3 = 7y + xy$ si;
		Implied by e.g. $kx^3 = 7y + xy$ where $k \ne 0$ or 64
		OR 64x = 7y + xy
Factorises e.g.		
$64x^3 = y(7+x) \text{ or } (4x)^3 = y(7+x)$	B1	FT
Divides e.g. $y = \frac{64x^3}{7+x}$	B1	FT; final answer must be simplified
$\frac{\text{Divides e.g. } y - }{7 + x}$		1 1, mar answer mast se simplined
12.	(4)	
$\frac{2}{3}\pi r^3 = 18000\pi$ oe	M1	
		10000
$r^3 = \frac{18000\pi \times 3}{2\pi}$ oe	M1	Allow for $r^3 = \frac{18000\pi}{\frac{2}{3}\pi}$ oe
$\sqrt{18000\pi \times 3}$		3
$(r=)\sqrt[3]{\frac{18000\pi\times3}{2\pi}}$ oe	M1	$(r=)\sqrt[3]{27000}$
(r=)30 (cm)	A1	If no marks, award
(7 –730 (GIII)		
		SC2 for $(r =) \sqrt[3]{\frac{18000\pi \times 3}{4\pi}} (= \sqrt[3]{13500})$ oe
		or 18000# × 3
		SC1 for $r^3 = \frac{18000\pi \times 3}{4\pi}$ oe
	(4)	

13.		May be seen in	n parts	
$\frac{x+2}{20} = \frac{5x+2}{60}$ oe	B2	B1 for $\frac{x+0.2}{8+2+}$	+1.8 —— oe	
120 - 40 = 100x - 60x oe	M1		ed equation' provi	ded of equivalent
() 0 (((m)) 00	۸.4	difficulty.	ad agreetion '	
(x =) 2 (km) oe	A1	FT 'their derive	ed equation.	
2+18 (02)				
$\left \frac{2+1.8}{2+0.2+1.8} \text{ oe or } \left(1 - \frac{0.2}{2+0.2+1.8} \right) \right $ oe	M1	FT 'their derive	ed 2', if possible; o	lo not ft negative
2+0.2+1.8 (2+0.2+1.8)		values of x		-
40				
19	A1	F1 provided si	mplification neede	ed
20	(6)			
14.(a)	(6)			
21	B2	B1 for 5 × 2.2	+ (1 ×) 10	
			,	
42 (%)	B1	FT provided at	least B1 awarded	d.
		If no marks aw		
14 //১)		$0.3 \times 10 + (1 \times 10^{-4})$	(5) 5 + 2 × 5 + 2.2 ×	: 10 + (1 ×) 10
14.(b) $v v \le 50 v \le 60 v \le 65 v \le 70 v \le 80 v \le 90$	B2	B1 FT for any	2 or 3 unshaded o	cells correct:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$, 'their 8' + 10, 'the	
			·	
14.(c)(i)	DO	ET (1):	LV 6 DO D4	
Correct cf diagram	B2		b)' for B2 or B1 pr nulative frequency	
50		lines need not		, may be a curve,
45			5 points plotted co	
40			most 2 incorrectly	
35		which have be	en correctly joined	ر ا
		NB, if correct:		
30		(50, 0), (60, 3)	, (65, 8), (70, 18),	(80, 40), (90, 50)
25				
20 /				
15				
10				
5				
0 50 55 60 65 70 75 80 85 90				
14.(c)(ii)		e.g.		
Sight of numerical evidence	E1		Mon	Tues
		Median	73 OR between	83 OR between
		LQ	70 and 80 67	80 and 90 77 - 78
		UQ		86 - 87
		% ≥ 75mph	42 (FT part a)	80
		No. > 80mph	10	35
	_			
Tuesday indicated and valid interpretation	E1			
using their numerical evidence e.g. 'The median for Tuesday is greater, (so				
more had a higher greatest speed).' or 'The				
upper quartile for Tuesday is greater, so the				
top 25% of drivers drove more quickly.'				
	(9)			

15.(a)(i) $0.8x + 0.9y \le 36 \text{ (so } 8x + 9y \le 360)$	B1	
15.(a)(ii)		
$0.2x + 0.1y \le 6$ oe, ISW	B1	Note: If, after gaining B1 (ISW), the inequality is incorrectly simplified, penalise -1, in (b), if the incorrectly simplified inequality is plotted
15.(b)		
x = x + y = 60 $x = x + y = 60$ $x = x + y = 360$ $x = x + y = 360$	B2	FT for B2 or B1 if possible B1 for one correct line
3×18 + 2.5×24	B1	FT 'their 24' where 'their 24' is obtained correctly from either one of the lines drawn or from solving one of their equations
(£)114	B1	FT 54 + 2.5 × ('their 24') correctly evaluated
(2)114	(6)	1 1 34 + 2.3 × (then 24) correctly evaluated
16.	• •	Analog was bearing all and the second and the secon
$P\widehat{Q}R = 90^{\circ}$ (angle in a semi-circle oe)	B1	Angles may be shown on diagram, otherwise any given angles must be identified e.g. $PRS = 76^{\circ}$
$P\widehat{Q}S = 76^{\circ}$ (angle in the same segment oe)	B1	
$S\widehat{Q}R = (90 - 76 =) 14^{\circ}$	B1	Implies 3 marks
Both reasons stated	E1	
Alternative method 1 By drawing, or imagining, an extra line segment, PS: PŜR = 90° (angle in a semi-circle oe)	B1	Angles may be shown on diagram, otherwise any given angles must be labelled e.g. PRS = 76°
RPS = (90 - 76 =) 14°	B1	
$S\widehat{Q}R = 14^{\circ}$ (angle in the same segment oe)	B1	Implies 3 marks
Both reasons stated	E1	

	Γ	
Alternative method 2 By introducing a specific value for one of the unknown angles, not used in the solution e.g. for an angle at the intersection of PR		Angles may be shown on diagram, otherwise any given angles must be labelled e.g. $PRS = 76^{\circ}$
and QS, or for the angle QSR. PQR = 90° (angle in a semi-circle oe)	B1	
Full method using angle facts to gain SQR = 14°	B2	Implies 3 marks
(must include, at some stage, angles in the same segment oe)	DZ	Implies 5 marks
Both reasons stated	E1	
	(4)	
17.(a)		
Sight of $\frac{10}{8}$ or $\frac{8}{10}$ oe si	B1	Can be implied from 128 × 10 ÷ 8 oe
$128 \times \left(\frac{10}{8}\right)^2$ or $128 \div \left(\frac{8}{10}\right)^2$ oe	M1	
200 (cm ²)	A1	
17.(b)		
64 : 125	B2	If not B2, award B1 for any one of the following:
		• 4 ³ :5 ³ • 8 ³ :10 ³ oe
		sight of 125 AND 64
		_
		$\bullet \left(\frac{10}{8}\right)^3$ oe
	/E\	FT 128 × 8 : 'their 200' × 10 from (a) oe
18.(a)	(5)	
0.163	B1	Allow for 0.16363 provided no rounding or termination
18.(b)	M1	
1000x - x = 3712.712 - 3.712 oe, si	IVII	
$\frac{3709}{999}$ ISW or $3\frac{712}{999}$ ISW	A1	
18.(c)		
$\frac{1}{18} + \frac{1}{5}$ oe	B1	Award no marks if the method for 18(b) is used to
(5 19) 22		answer 18(c)
$\left(\frac{5}{90} + \frac{18}{90} = \right) \frac{23}{90}$ oe, ISW	B1	
	(5)	
19.(a)		
$V \propto 3^t$ or $V = k \times 3^t$ si	B1	Allow for $V \propto k \times 3^t$
$k = \frac{9}{3^4}$ oe, si	B1	For isolating 'k'
$V = \frac{3^t}{9}$ oe	B1	Mark final answer
		Accept $V = 3^{t-2}$ Must be in terms of V and t
19.(b)(i)		Allow B1B1B0 only for $V = 0.11(1)3^t$ if truncated
$(V =) \frac{1}{9}$	B1	FT 'their constant of proportionality', provided ≠ 1
19.(b)(ii)		
$27 \times 9 = 3^t$ or $3^3 = 3^{t-2}$ oe	M1	FT 'their constant of proportionality', provided ≠ 1
(<i>t</i> =) 5	A1	FT if possible
	(6)	

	is not 100, and
20.(b) 60 B2 B1 for sight of $5 \times 4 \times 3$ but not 5×60 B1 FT 'their derived 125' provided it 'their $5 \times 4 \times 3$ ' provided fraction (5)	is not 100, and
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	is not 100, and
$ \begin{array}{c c} \hline $	is not 100, and
(5)	< 1
21.	
Sight of $\sqrt{27} = 3\sqrt{3}$	
$\frac{44}{5+\sqrt{3}} \times \frac{5-\sqrt{3}}{5-\sqrt{3}} \text{ oe} $ M1	
$44 \times \frac{5 - \sqrt{3}}{22}$ oe B1 For a correct denominator of 22	
22	
$7-3\sqrt{3}+10-2\sqrt{3}$ oe M1 FT for final M1 A0 provided B1 M	11 previously
$\begin{vmatrix} 17-5\sqrt{3} \end{vmatrix}$ awarded CAO	
Alternative method	
Sight of $\sqrt{27} = 3\sqrt{3}$ B1 May be seen at any stage	
$\left \frac{(7 - \sqrt{27})(5 + \sqrt{3}) + 44}{5 + \sqrt{3}} \left(= \frac{35 + 7\sqrt{3} - 5\sqrt{27} - \sqrt{27 \times 3}}{5 + \sqrt{3}} \right) \text{ oe} \right M1$	
$\left(= \frac{70 - 8\sqrt{3}}{5 + \sqrt{3}} \right)$ oe si	
$= \frac{(70 - 8\sqrt{3})(5 - \sqrt{3})}{(5 + \sqrt{3})(5 - \sqrt{3})} \text{ oe si} $ M1 FT 'their' $\frac{70 - 8\sqrt{3}}{5 + \sqrt{3}}$ ' provided B1 M1 p	previously
$=\frac{1}{(5+\sqrt{3})(5-\sqrt{3})} \text{ de Si} \qquad WI \qquad 5+\sqrt{3}$ $awarded$	•
$= \frac{(350 - 70\sqrt{3} - 40\sqrt{3} + 24)}{22} \text{ oe si} \qquad B1 \qquad For a correct denominator of } 22$	
$= 17 - 5\sqrt{3}$ $A1 CAO$	
(5)	
22.	
$\left[\left(\frac{6}{10} \times \frac{3}{9}\right) + \left(\frac{3}{10} \times \frac{6}{9}\right)\right]$ M2 M1 for either product	
	WD
190	VVII
(3)	
23. (a) B1	
23. (b)	
$(x-5)^2-16=0$ si	
$5 \pm \sqrt{16}$ or $(x-1)(x-9)$ M2 May be seen in stages M1 for $x-5 = \pm \sqrt{16}$ or $5 + \sqrt{16}$	or
$x^2 - 10x + 9 = 0$	
x = 1, x = 9 A1 Not from wrong working;	
x - 1, x - 9 allow (1, 0) and (9, 0)	
final answer of $x = 9$ only implies	M1
(5)	