

GCSE MARKING SCHEME

AUTUMN 2019

GCSE
MATHEMATICS – COMPONENT 1 (HIGHER TIER)
C300UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE MATHEMATICS

COMPONENT 1 - HIGHER TIER

AUTUMN 2019 MARK SCHEME

GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
1.* For the plan: draws a circle, radius 3 cm and for the side elevation: draws a 4 cm by 6 cm rectangle	В3	Circle must be drawn with compasses and rectangle must be ruled. B2 for either the plan or elevation correct or for good freehand sketches of both the correct circle and the correct rectangle or B1 for a circular plan with incorrect radius or for a rectangular side elevation with incorrect dimensions or for a good freehand circle for the plan or a good freehand rectangle for the elevation; may also have incorrect dimensions
	(3)	
2.*(a) Two distinct reasons based on sample size, location, time or bias. e.g. 'She needs to ask more than 20 people.' or 'She needs to vary the time that she asks people' or 'People at the bus station may be biased against cars'	E2	E1 for each valid reason; reasons need to be distinct; comments made regards time could be 'hours spent' or 'time of day' or 'days of the week attended' and these can be considered as distinct Allow e.g. 'It's only the first 20 people.' (sample size) or 'People might have to get on the bus.' (location) or 'It will be all school children at that time of day.' (time or bias) Do not allow e.g. 'People might lie' or 'People might not want to talk.'
(b) Two distinct criticisms based on time frame and response boxes. e.g. 'She has not said per day, per week etc' or 'The times are too vague' or 'There is nowhere to answer if you do not have a car' or ' 4 is repeated'	E2	E1 for each valid criticism; criticisms need to be distinct (one comment only on response boxes and one on time frame omitted) Allow e.g. 'It is not specific enough.' (BOD time) or 'People might not have a car.' (Response boxes)
2	(4)	
3. $(3 \times 10^6) \div (2 \times 10^6)$ oe	M1	Allow for $(3 \times 10^6) \div (1.8 \times 10^6)$
1.5	A1	FT 'their estimate' If M0 then allow SC1 for sight of $(2.99 \times 10^6) \div (1.799 \times 10^6)$
km	B1	Appropriate unit for their answer e.g. 1500 m gets M1 A1 B1; allow for 'km' even if no calculation attempted
	(3)	

4.* (a)		
2x=5	B1	
$x = \frac{5}{2}$ oe, ISW	B1	FT from 'their $ax = b$ ' provided $a \neq b$ or 0 or 1
_		and $b \neq 0$;
		accept $\frac{b}{a}$ but if on FT $\frac{b}{a}$ simplifies to an integer
		a a
		the answer must be given as an integer.
		x = x can be omitted but must not be wrong if
		there.
		Correct answer implies first B1.
(b)	D4	
$ \begin{vmatrix} x=3 \\ y=2 \end{vmatrix} $	B1 B1	
y - 2		
(c)		
Line with solid circles at both ends starting at –2 and ending at 3	B1	
at –2 and ending at 3		
(d)		
$2x < 4 \times 3$	M1	
x < 6	A1	No marks for use of "=", unless finally replaced to give $x < 6$ then award M1 A1.
		to give $x < 0$ then award wit A1.
		x <= 6 is A0
	(7)	
5. (a)	M2	e.g. for 69 + 17.25 or
$34.50 \times 2 + (34.50 \times 2) \div 4$ oe si	IVIZ	e.g. 101 09 + 17.25 01
		$3450 \times 2 \times 1\frac{3}{12}$ $3450 \times 2\frac{1}{2}$
		$\frac{3450 \times 2 \times 1\frac{3}{12}}{100} \text{ or } \frac{3450 \times 2\frac{1}{2}}{100} \text{ oe}$
		N4.6 04.50 0 : 6 0450 4.00 0450
		M1 for 34.50×2 oe si or for $3450 \times 1.02 - 3450$ (= $3519 - 3450$) or for sight of (£)69 or for sight
		of 2.5% oe
(0)06.05	A 4	
(£)86.25 (b)	A1	
(~)		
$\frac{65 \times r \times 5}{100} = 9.75 \text{ or } \frac{65 \times r}{100} = \frac{9.75}{5}$	N 4 4	
	M1	
or 1.95 (per year interest) oe		
0.75×100		1.05
$(r =) \frac{9.75 \times 100}{5 \times 65}$ oe	M1	e.g. $\frac{1.95}{65} \times 100$ or sight of $\frac{3}{100}$
5 × 05		00 100
3 ISW	A1	Allow 3%
Alternative method 1:		
$\frac{65 \times 5}{100}$ (= 3.25) <i>oe</i>	M1	
9.75 ÷ 3.25	M1	FT 'their 3.25'
3 ISW	A1	Allow 3%
Alternative method 2:		
9.75 ÷ 0.65 (=15) oe	M1	May be found using a build-up method
15 ÷ 5	M1 A1	FT 'their 15'
3 ISW	(6)	Allow 3%
I	(0)	

	T	
6.*		
$7 + \frac{5}{20} + \frac{9}{20}$ or $\frac{105}{20} + \frac{49}{20}$ oe; si	N 4 0	aguivalente may be desirede
20 20 20 20 30, 51	M2	equivalents may be decimals 5.25 + 2.45 and 5.25 – 2.45
<u>and</u>		
$3 + \frac{5}{20} - \frac{9}{20}$ or $\frac{105}{20} - \frac{49}{20}$ oe; si		M1 for $5\frac{5}{20} + 2\frac{9}{20}$ oe or $5\frac{5}{20} - 2\frac{9}{20}$ oe or
$\frac{3+20-20}{20}$ or $\frac{20}{20}-\frac{20}{20}$ oe, si		20 20 20 20
		5.25 + 2.45 or 5.25 – 2.45
$7\frac{7}{10}$ and $2\frac{4}{5}$	۸.2	CAO
10 5	A2	A1 for either or for a pair of correct, but
		unsimplified, answers
	(4)	unsimplified, answers
7.*	(+)	
$(BD =) \sqrt{6^2 + 8^2}$	M1	Allow for comment
$(BD =) \sqrt{6^2 + 8^2}$		e.g. 'Pythagorean triple is 6, 8, 10.' or '6, 8, 10
		is a right-angled triangle.
		(must be clear it is a triple and not just listing
		the 3 values from the diagram)
		Allow poor use of notation if intent is clear.
10		Land making the MA control of the first
10	A1	does not imply M1 unless it is clear that
		BD = 10 (either in a statement, on the diagram
		or from $\tan x = \frac{10}{10}$).
		10
45	A1	dep on all previous marks being awarded
	(3)	
8.*(a)		
(752 – 27 =) 725	B1	
725 ÷ 25	M1	FT 'their 752 – 27'
29	A1	
Alternative method 1:		
752 ÷ 25	M1	
30 remainder 2 or 30.08	A1	
29	A1	
Alternative method 2:		
At least two trials of $25 \times n$ or $752 \div n$,	1.14	
where n is greater than 20	M1	implies M1
25 × 29 = 725	A1	implies M1
29 (b)(i)	A1	
(b)(i)	E1	'It is impossible' without further explanation is
Valid explanation e.g. 'There are more guests so the food should	=	'It is impossible' without further explanation is
not last longer.' or 'He has halved instead of		EU
doubling.' or 'The food will last for less time		Allow e.g. 'If you divide one side you have to
if there are more people.		multiply the other,'
The state of the s		
		Do not allow e.g. 'You have to multiply not
		divide.' (too vague)
(b)(ii)		
4 (days)	B2	B1 for a correct intermediate step e.g. 10
		guests and 12 days or for $\frac{20\times6}{20\times6}$ on si
		guests and 12 days or for $\frac{20 \times 6}{30}$ oe si
	(6)	

0.*	1	T 7
9.*		
$\frac{1}{8}$ oe; ISW	B2	B1 for $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ oe
8	D2	2 2 2 30
		If no marks awarded, then SC1 for evidence of
		the only possible score being 1, 1, 1 e.g. in a
		partially complete list of possible scores with all
		other scores even and $1 \times 1 \times 1$ listed as odd
40	(2)	Ob a all dia mana
10.		Check diagram
(length of hedge = 11 × 1.2 ÷ 2 =) 6.6 (m)		
or (width of garden = 13 × 1.2 ÷ 2 =) 7.8 (m)	B1	for either
(Width of galuet) = 13 ^ 1.2 · 2 =) 1.0 (III)	וטו	
(pond is) 8 (m) by 3.5 (m)	B2	B1 for use of 28 and 8 in an attempt to calculate
(, 2) 3.3 ()		the width of the pond.
(flowerbed is) 10 (m) by 1.5 (m)	B1	FT 'their 8' + 2 by 'their 3.5' – 2
		,
(area of grass =)		
$10 \times (6.6 + 1.2) - 10 \times 1.5 - 28$ or	M1	FT 'their derived 10, 6.6, 7.8, 1.5 and 3.5'
$3.5 \times 2 + 10 (6.6 + 1.2 - 1.5 - 3.5)$ or		
$(3.5 + 2.8) \times 2 + 8 \times 2.8$ oe		
4 0		
35 (m ²)	A1	CAO
44	(6)	
11. (Proportion of tagged coots in sample is)		
$\left \frac{20}{48} \right = \frac{5}{12}$ oe or		
40 (12)		
(Proportion of sample tagged is)		
$\left \frac{20}{30} \left(= \frac{2}{3} \right) \right $ oe	M1	
30(3)		
$\frac{5}{12} = \frac{30}{72}$ or $\frac{2}{3} = \frac{48}{72}$ or	N 4 4	
$\frac{12}{12} - \frac{72}{72}$ or $\frac{7}{3} - \frac{7}{72}$ or	M1	Implies the first M1;
1		30 20 48 20 30×48
$\frac{1}{12}$ (of population) is 6 (coots) oe		allow $\frac{30}{r} = \frac{20}{48}$ or $\frac{48}{r} = \frac{20}{30}$ or $\frac{30 \times 48}{20}$ oe to
14		score M1 M1
70	^4	
72	A1	CAO
	(3)	

12. (a)		
m = 2 si	B1	could be gradient = 2
c = 1 si	B1	could be y-intercept = 1
y = 2x + 1	B1	Implies all 3 marks
(b) $m = -0.5 \text{ si}$	B1	FT 'their gradient <i>AB</i> '; must be clear indication
(midpoint =) (1, 3)	B1	of being the gradient
	M1	FT 'their –0.5' provided ≠ 2;
3 = -0.5(1) + c	IVIII	Accept other full methods e.g.
		$\frac{y-3}{x-1}$ = 'their -0.5' or $y-3$ = 'their -0.5'($x-1$)
y = -0.5x + 3.5 ISW	A1	Accept any correct form e.g.
		$\frac{y-3}{x-1} = -0.5$ or $y-3 = -0.5(x-1)$
42 (-)	(7)	
13. (a)		40 45 50 55 60
, , , , , , , , , , , , , , , , , , ,	B2	40 45 50 55 60 16 21 24 29 32
30		B1 for remaining points plotted correctly
25		B1 for all remaining correctly-plotted points joined correctly with straight lines or a smooth
/		curve and no extension beyond (60, 32)
20		If no marks, award SC1 for at least 4 points
15		plotted correctly and joined with straight lines or a smooth curve and no extension beyond
		(60, 32)
10		
5		
020 30 40 50 60		
(b)(i)	54	an ET (the sin OE die manne)
8 (b)(ii)	B1	or FT 'their CF diagram'
35 40 (c) (i)	B1	or FT 'their CF diagram'
Box plot with ends of whiskers at 26 and 60	B1	
LQ 35	B1	or FT 'their CF diagram'
Median 40	B1	or FT 'their CF diagram'
UQ 50	B1	or FT 'their CF diagram'
(c)(ii) Valid explanation e.g.	E1	Must include idea of 'less than'.
'The slowest time could be anything between 55 and 60.' or 'The slowest time		Allow 'The slowest time could be less than 60.'
could be 58 seconds.'		Do not allow e.g. 'We do not know that anyone took 60 seconds.' (no idea of less than)

(c)(iii) Valid effect on the range e.g. The (actual) range will be smaller.	E1	Allow e.g. 'It will be smaller.' or 'Eddie's range is bigger than it should be'. Do not allow e.g. 'It makes it bigger.' without reference to this being a comment about Eddie's range.
Valid effect on the IQR e.g. The IQR will not change.	E1	
14. (a)	(11)	
125	B2	B1 for sight of 5^3 or for $\left(\frac{1}{125}\right)^{-1}$;
		allow for sight of $\frac{1}{5^3} = \frac{1}{125}$
(b) 64	B2	not from wrong working;
		B1 for 4^3 or for $(\sqrt[4]{256})^3$
(c) 7	B1 (5)	Accept 7 to 7.2 inclusive
15.(a) Correct tree diagram $ \begin{array}{cccccccccccccccccccccccccccccccccc$	B3	B1 for left hand branches correct B1 for top right branches correct B1 for bottom right branches correct Allow equivalent fractions or exact decimals in all cases. If no marks then SC1 for two correct probabilities
(b) $\frac{4}{10} \times \frac{6}{9} + \frac{6}{10} \times \frac{5}{9}$ oe	M2	FT 'their probability tree' M1 for either product
54/90 oe; ISW	A1 (6)	CAO; Ignore any attempts to cancel or decimalise after a correct answer seen $\frac{54}{90} \text{ implies 3 marks but an answer of } \frac{6}{10} \text{ or } \frac{3}{5}$ without working earns 3 marks only if a correct tree seen in part (a).

	ı	T
16. (a) $y \propto \frac{1}{\sqrt[3]{x}} \text{OR} y = \frac{k}{\sqrt[3]{x}} \text{ oe}$	B1	Allow $y \propto \frac{k}{\sqrt[3]{x}}$;
$2 = \frac{k}{\sqrt[3]{27}}$ OR $2 = \frac{k}{3}$ OR $k = 6$	M1	M1 implies B1
√27 3		FT (for possible B0 M1 A0) for use of $y \propto x^{\frac{1}{3}}$ or
		1
		$y \propto \frac{1}{x^n}$ with $n > 0$ and $n \neq \frac{1}{3}$
$y = \frac{6}{\sqrt[3]{x}}$	A1	CAO; may be seen (explicitly) in part (b)
(b)(i) (y =) 0.6 oe	B1	FT 'their derived k ' or
		use of $y \propto x^{\frac{1}{3}}$ or $y \propto \frac{1}{x^n}$ with $n > 0$ and $n \neq \frac{1}{3}$
$ (b)(ii) $ $\sqrt[3]{x} = \frac{6}{3} \text{ oe}$	M1	FT 'their derived <i>k</i> ' or
$\sqrt[3]{x} = \frac{3}{3}$ de	IVII	1
		use of $y \propto x^{\frac{1}{3}}$ or $y \propto \frac{1}{x^n}$ with $n > 0$ and $n \neq \frac{1}{3}$
(x =) 8	(6)	FT
17. (a)(i)	(0)	
$V_1 = 0.8 \times 10000 \ (= 8000)$	B1	
(a)(ii) $V_2 = 0.8 \times V_1 = 6400 \text{ si}$	B1	Allow poor use of notation
$V_3 = 0.8 \times V_2 = 0.8 \times 6400 \mathrm{si}$	M1	FT 'their $V_2 = 0.8 \times V_1$ '
$V_3 = 5120$	A1	Implies all 3 marks
(b) $V_0 = 240000$		
$V_{n+1} = 1.02V_n$ where $n \ge 0$	B1	Accept $1.02 \times V_n$
	(5)	
18. (a) $y = 2(x+1)(x-4)$ oe; ISW	B3	B2 for $y = k(x+1)(x-4)$, where k is -2 or any
y = 2(x + 1)(x - 1) so, levv		non-zero positive value e.g. 1
		or B1 for a factor of $(x+1)$ or $(x-4)$ seen or implied
		If no marks then SC2 for an answer of
		y = 2(x-1)(x+4) or equivalent or SC1 for an
		answer of $y = k(x-1)(x+4)$ oe, where k is -2
(b)		or any non-zero positive value e.g. 1
Substitutes a pair of co-ordinates with non-	S1	
zero x co-ordinate into $y = k^x$	B1	not from wrong working, implies \$4
+		not from wrong working; implies S1
19. (a)	(5)	
243	B2	B1 for 3 ⁵ oe
(b) 2	B2	B1 for $p \times$ 'their $m' = 2 \times 3^4$ oe or for sight of
$\frac{2}{3}$ oe	02	_
		$\frac{3^4 \times 2}{3^5}$ or $\frac{3^5 \times 2}{3}$ oe
	(4)	

20. (a) $7\sqrt{11}$	B2	Allow $k = 7$; B1 for $2\sqrt{11}$ or $5\sqrt{11}$ seen
(b)		M marks may be awarded in reverse order
$\frac{3 - \sqrt{3} - \sqrt{3} + 1}{\sqrt{3}}$ or better	M1	For squaring the numerator with at least 3 terms out of 4 correct; may be implied by e.g. $\frac{3-2\sqrt{3}-1}{\sqrt{3}}$
$\frac{3-\sqrt{3}-\sqrt{3}+1}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \text{ or } \frac{4}{\sqrt{3}}-2$	M1	For rationalising the denominator or writing as a simplified binomial
$\left \frac{4}{3}\sqrt{3}-2 \right $	A1	For correct completion to given form
Alternative method:		
$\frac{3 - \sqrt{3} - \sqrt{3} + 1}{\sqrt{3}} (= c\sqrt{3} + d)$	M1	
$4-2\sqrt{3}=3c+d\sqrt{3}$ and e.g. compares		
appropriate terms	M1	
$c = \frac{4}{3} d = -2$	A1	
(c) Any values such that x and y are not square and $y = 4x$	B2	B1 for values x and y such that $y = 4x$ oe, si
	(7)	
21. (a) 14	B2	B1 for $2 \times \sqrt{49}$ or for radius = 7 si
(b) (-7, 7)	B2	FT 'their derived radius' from part (a) B1 for $T\left(-\sqrt{49},\sqrt{49}\right)$ or equations of tangents stated as $x=-7$ and $y=7$ or clear sketch with correct intersecting tangents marked and axes appropriately numbered. NB Sketch may be in answer space for part (a).
	(4)	

22.(a)(i) Valid explanation e.g. '7 divided by 0 is not defined.'	E1	Accept e.g. 'You cannot divide by 0.'
		'The denominator is 0.' is not sufficient
(a)(ii) Swop variables and change subject or vice versa	M1	Allow one sign or arithmetic slip
$y = \frac{7}{x} + 1 \left(f^{-1}(x) = \frac{7}{x} + 1 \right)$	A1	CAO
(b) $(hg(x) =) 9(x + 1)$	B2	B1 for 9($\sqrt[3]{x+1}$) ³
9(x+1)(x-1)=7	M1	FT 'their hg' if of equivalent difficulty
$x^2 = \frac{7}{9} + 1$ oe	M1	
$x=\pm\frac{4}{3}$ oe	A1	CAO
	(8)	
23. (a)	(-/	
Summation of areas of 4 vertical strips	S1	e.g. trapezium rule or equivalent attempted with trapezia or triangles and rectangles Do not allow for 'counting squares and adding', even if by strip
(y values =) 17, 5, 1, [5, 17] si	B1	ignore extra correct <i>y</i> values for this mark;
Correct calculation for the area using 4	M1	FT 'their <i>y-</i> values' e.g.
trapezia oe		$2\left(\frac{1}{2} \times 2 \times (17+5) + \frac{1}{2} \times 2 \times (5+1)\right)$
56 (square units)	A1	CAO
(b)		
Overestimate with valid reason e.g. '(The curve is convex so) the area of under the curve for each strip is less than the	E1	Allow e.g. 'The trapeziums are above the curve' or 'The curve is convex'
area of the trapezium estimating that area.'		Comments must be based on an attempt to find the area using 4 vertical strips in (a)
	(5)	