GCSE MARKING SCHEME

AUTUMN 2018

GCSE
MATHEMATICS - COMPONENT 1 (HIGHER TIER) C300UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE MATHEMATICS

COMPONENT 1 - HIGHER TIER

AUTUMN 2018 MARK SCHEME

GCSE (9-1) Mathematics Component 1: Higher Tier		Mark	Comment
1.*(a)	Correct line of best fit	B1	Following trend with some points above and below
	Answer in the range 7.5 to $8(\mathrm{~kg})$	B1	Or FT their line for an answer outside this range
(c)	No with valid reason e.g. 'It is too tall' or 'A dog of mass 8.2 kg should have a height of about 27.5 cm '	E1	Allow e.g. 'For a dog of $35 \mathrm{~cm}, 8.2 \mathrm{~kg}$ is not heavy enough.' or 'lts height does not match its weight.' Allow e.g. 'It is too far off the line of best fit.' provided B1 has been awarded in (a).
		(3)	
2.*(a)	(£) $18(.00)$	B1	
(b)(i)	They are in direct proportion indicated	B1	
(b)(ii)	4.5 The cost (in £) per mile	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for $\frac{45}{10}$ or equivalent or equivalent Allow $£$ per mile NB An answer of $£ 4.5(0)$ per mile earns 3 marks
		(5)	
3.	$\begin{aligned} & \left(3 \times 10^{5}=\right) 300000 \text { or } \\ & (40000=) 4 \times 10^{4} \\ & \frac{3 \times 10^{5}}{4 \times 10^{4}} \text { or } \frac{300000}{40000}=7.5 \end{aligned}$ (so more than 7)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	$\frac{\text { Alternative method 1: }}{7 \times 40000=280000}$ B1 $\left(3 \times 10^{5}=\right) 300000$ (so more than 7) $B 1$ $\frac{\text { Alternative method 2: }}{7 \times 40000} 3300000$ M1 $\frac{280000}{300000}$ (which is less than 1) A1
		(2)	

4. $4 \pi\left(\frac{3}{4}\right)^{2}$			M1 A1	Allow the omission of the brackets Or an equivalent multiple of π; mark final answer
			(2)	
5.(a) $\quad\binom{24}{12}$			B2	Mark final answer B1 for each element or for $\mathbf{p}+\mathbf{q}=\binom{6}{3}$ or $4 \mathbf{p}=\binom{-4}{20}$ or $4 \mathbf{q}=\binom{28}{-8}$ seen or for $\left(\frac{24}{12}\right)$ as final answer or for a correct answer seen then spoiled
(b) 3	3		B2	Mark final answer; allow embedded answers e.g. $\binom{-2}{10}+3\binom{7}{-2}=\binom{19}{4}$ B1 for $-2+7 x=19$ or $10-2 x=4$ or for $x\binom{7}{-2}=\binom{21}{-6}$ or for $\binom{-2}{10}+3\binom{7}{-2}=\binom{19}{4}$ seen with an incorrect final answer
			(4)	
6.* 5 park keepers pruning after 1 hour				
			B1	seen or implied
10 trees left to prune			B1	seen or implied
Fully correct method in steps or statements e.g.			M1	seen or implied; FT 'their derived 10 ' or $2 \times \frac{3}{5} \times \frac{10}{6}$
P/keepers	Hours	Trees		Allow equivalent working in minutes
3	$\frac{2}{2}$	$\frac{6}{2}$		
5	2	10		
2 (hours)			A1	Seen or implied
3 (hours)			A1	FT 'their 2' provided M1 has been awarded
			(5)	

$\begin{aligned} & \text { 9. (a) } \\ & \varepsilon \mid \end{aligned}$		B3	B2 for any 4 or 5 correct or B1 for any 2 or 3 correct FT where possible for B2 or B1 NB common solution for B2 will be ε
(b)	$\frac{1}{30}$ or equivalent	B1	ISW FT 'their 1', which may be zero or empty
(c)	$\frac{7}{17}$	B2	FT 'their 6' +1 (not their 17 as this is given) B1 for denominator of 17 or numerator of 7 or 'their 6 ' +1 , provided the fraction is < 1 or B1 for correct answer with wrong notation e.g. 7 out of 17 or $7: 17$
		(6)	

14. Lines $x=-1$ AND $y=-2$ drawn correctly Line $y=2 x-4$ drawn correctly Line $y=4-x$ drawn correctly Region indicated with correct marking of boundaries	B1 B1 B1 B1	Allow solid line used for this mark only $y=4-x$ must be shown as dotted or indicated that it is not included. FT 'their 4 lines' provided at least B2 previously awarded.
	(4)	
15.(a) 8	B1	
(b) 7 points plotted correctly All points joined with a smooth curve or with line segments	$\begin{aligned} & \mathrm{B} 2 \\ & \mathrm{~B} 1 \end{aligned}$	B1 for 5 or 6 points plotted correctly tolerance $\pm 1 \mathrm{~mm}$ last point must not be joined to the axis; tolerance $\pm 1 \mathrm{~mm}$
(c) $\quad($ median $=) 42$ to 43 $(\mathrm{IQR}=) 50-35$ 15	B1 M1 A1	FT 'their attempt at a cf diagram' FT 'their graph' for lower quartile; Upper quartile must be exact as it is a given value

\begin{tabular}{|c|c|c|c|}
\hline (d)(i) \& 22
\[
(22-8=) 14
\] \& \begin{tabular}{l}
B2 \\
B1
\end{tabular} \& \begin{tabular}{l}
Award B1 for \(1 / 2 \times 20 \times 1.6\) or \(30 \times 0.2\) or sight of 16 or 6 \\
If B0 then SC1 for misreading scale,
\[
(1 / 2 \times 20 \times 1.7+30 \times 0.4=) 29
\] \\
FT 'their 22' - 'their 8' from part (a); provided at least one mark previously awarded
\end{tabular} \\
\hline (d) (ii) \& \begin{tabular}{l}
Valid explanation e.g. \\
'No as she has not asked sufficient people.' or 'No as she has only asked technology students.' or 'She only asked them about 1 day'
\end{tabular} \& E1 \& \\
\hline \& \& (11) \& \\
\hline 16.(a) \& \begin{tabular}{l}
(Angle BAD =) \(62^{\circ}\) \\
(Angle BDA =) \(51^{\circ}\) or \\
(Angle QBD =) \(62^{\circ}\)
\[
(w=) 67
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1
\end{tabular} \& May be seen in diagram. \\
\hline (b) \& \begin{tabular}{l}
Angle \(F H E=180-2 x\) \\
(Angles in a triangle) \\
Angle \(F G H=y\) \\
(Triangle \(F G H\) is isosceles) AND \\
Angle \(G H F=180-2 y\) \\
(Angles in a triangle) \\
Angle EHG
\[
\begin{aligned}
\& =360-(180-2 x+180-2 y) \\
\& =2 x+2 y \text { or } 2(x+y)
\end{aligned}
\] \\
(Angles at a point) \\
(Therefore the angle at the centre is twice the angle at the circumference.) \\
At least two correct reasons stated appropriately and all steps included in the proof.
\end{tabular} \& B1
B1

B1

E1 \& | Allow angle G for angle $F G H$ or angle E for angle HEF. |
| :--- |
| Do not allow angle H for e.g. angle GHF. |
| Alternative method for B marks: |
| (ignoring angle FHE $=\ldots$ and extending the line FH and using a naming convention to identify the exterior angle in the proof e.g. I for the end of the extension or marking the exterior angle as e.g. a) |
| Angle EHI $=2 x$ (exterior angle) |
| Angle FGH $=y$ (Triangle FGH is isosceles) |
| Angle $I H G=2 y$ (exterior angle) |
| Angle $E H G=$ Angle $E H I+$ Angle $I H G=2 x+2 y$ B1 |

\hline \& \& (7) \&

\hline
\end{tabular}

17. (Flow $=25 \times 12 \times 5=$) $1500\left(\mathrm{~cm}^{3} / \mathrm{s}\right)$ (3 litres takes) 2 (secs to exit pipe) (Takes $40 \div 5=8$ (secs along pipe) (Total time $=2+8=10$ (secs)	B1 B1 B1 B1	FT 'their 2' + 'their 8' providing at least B2 previously awarded Alternative method 1: Alternative method 2: (Whole pipe holds $=25 \times 12 \times 40=$) 12 (litres) or equivalent (Total time $=2+8=10$ (secs)
	(4)	
18. $\quad I \propto \frac{1}{d^{2}} \quad$ or $\quad I=k \times \frac{1}{d^{2}}$ or equivalent $\begin{aligned} & 7=\frac{k}{2^{2}} \\ & k=28 \text { or } I=\frac{28}{d^{2}} \\ & (I=) \frac{28}{4^{2}} \\ & (I=) 1.75 \text { (candela) CAO } \end{aligned}$	B1 M1 A1 M1 A1	FT their equation providing it is non-linear FT their equation providing it is non-linear FT 'their 28 ' Alternative method: 7×2^{2} seen or implied in later working B1 Forms $7 \times 2^{2}=I \times 4^{2}$ or M1 if one error $I=\frac{7 \times 4}{16}$ seen or implied; FT 'their equation of equivalent difficulty' M1 ($I=$) 1.75 (candela)CAO A1
	(5)	

19.(a)	$\sqrt{3}$	B1	
(b)	$8 \sqrt{7}$	B2	Allow $k=8$; B1 for $3 \sqrt{7}$ or $5 \sqrt{7}$ seen
(c)	-2	B2	B1 for 3 out of 4 correct in $8+4 \sqrt{5}-4 \sqrt{5}-2(5)$ or for sight of all 4 terms e.g. listed
(d)	$(x-\sqrt{3})(x+\sqrt{3})$	B1	seen or implied
		(6)	
20.(a)	$0.41 \dot{6}$	B1	
(b)(i)	$100 x=127.27 \text { and } x=1.27$ and attempt to subtract $\frac{126}{99}$ or equivalent	M1 A1	or equivalent Allow $1 \frac{27}{99}$
(ii)	$\frac{14}{11} \times \frac{14}{11}$ with an attempt to multiply $1 \frac{75}{121}$	M1 A1	or equivalent e.g. $\frac{126}{99} \times \frac{126}{99}$; FT 'their derived $\frac{126}{99}$, CAO
		(5)	
21. (a)	No implied or indicated with valid explanation e.g. '(All the y coordinates change sign so) it is a reflection in the x-axis'	E1	
(b) Valid criticism e.g. 'The graphs are not labelled so you cannot tell which is which' or 'None of the branches should cross the x-axis'		E1	Allow e.g. 'There is no scale so she might have drawn something like $\frac{2}{x}$ and $-\frac{2}{x}$,
		(2)	

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
22.(a) \(\quad g^{-1}(x)=\frac{4-x}{3}\) \\
\(4-x=3 x+6\) or equivalent
\[
x=-\frac{1}{2}
\]
\end{tabular} \& B2

M1

A1 \& | B1 for $x=\frac{4-y}{3}$ or equivalent unless x and y interchanged later or |
| :--- |
| SC1 for y or $g^{-1}(x)=\frac{4+y}{3}$ or equivalent $\begin{aligned} & \text { Alternative method: } \\ & x=g(x+2) \\ & x=4-3(x+2) \\ & x=-2-3 x \text { or equivalent } \\ & x=-\frac{1}{2} \end{aligned}$ |

\hline (b) $\quad \begin{aligned} & 4-3(4-3 x) \\ & 9 x-8\end{aligned}$ \& $$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$ \&

\hline (c) Valid explanation e.g. ' $h(-1)=h(1)=6$ so both are equal to $g(6)$.' \& E1 \& | Allow ' 1 ' is the same as $(-1)^{2}$. |
| :--- |
| Allow for working out $g h(-1)$ and $g h(1)$ and showing they are both e.g. -14 . |

\hline \& (7) \&

\hline | 23.(a) |
| :--- |
| Correct sine graph over full domain with maxima and minimum at 1 and -1 respectively | \& B2 \& | B1 for correct shape over full domain but 1 and -1 not marked |
| :--- |
| or for correct roots, maxima and minimum but incorrect shape e.g. ruled sections |
| or for the correct curve from 0° to 360° with 1 and -1 marked |

\hline (b) 4 \& B1 \&

\hline \& (3) \&

\hline 24.(a) 5040 \& B2 \& B1 for 7 ! or $7 \times 6 \times 5 \times 4 \times 3 \times 2(\times 1)$ or equivalent

\hline (b) 210 \& B2 \& FT 'their 5040 ' $\div(4 \times 3 \times 2(\times 1))$ B1 for $7 \times 6 \times 5$ or $\frac{7!}{4!}$

\hline \& (4) \&

\hline
\end{tabular}

25.(a)	-0.49, -0.46	B1	
(b)	Valid explanation e.g. 'There is a change of sign (so the value will be in this range).'	E1	
(c)	$0.74^{2}-0.5 \text { or } 0.74^{2}=0.5476$ ($0.5476-0.5=$) 0.0476 AND valid conclusion e.g. 'The answer is between 0.7 and 0.74 ' or ‘0.0476 > 0’	B1 B1	
		(4)	
26.(a)	$\sqrt{144}-\sqrt{4}=10$ or $12-2=10$	B2	B1 for $\sqrt{144}-\sqrt{4}$ or for (radius of outer circle =) 12 or (radius of inner circle $=$) 2 seen
(b)	$y=-12$	B1	
		(3)	

