GCSE MARKING SCHEME

AUTUMN 2017

GCSE MATHEMATICS - COMPONENT 1 (HIGHER) C300UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE (9-1) Mathematics Autumn 2017 Component 1: Higher Tier	Mark	Comment
1(a) $2^{3} \times 3^{2} \times 5$	B3	B2 for $2 \times 2 \times 2 \times 3 \times 3 \times 5$ or B1 for an attempt at the factors (list, repeated division or factor tree) with two correct factors seen before the first error
$\begin{aligned} & 1(\mathrm{~b}) \\ & 45 \end{aligned}$	B2	FT the HCF of $3^{2} \times 5 \times 7$ and 'their $2^{3} \times 3^{2} \times 5^{\prime}$ B1 for $3^{2} \times 5$ or for any common factor of 315 and 360 which is greater than 1
$\begin{aligned} & \text { 1(c)(i) } \\ & 0.00054 \end{aligned}$	B1	
$\begin{aligned} & 1(\mathrm{c})(\mathrm{ii}) \\ & 8 \times 10^{4} \end{aligned}$	B2	B1 for 0.8×10^{5} seen or for a final answer of 80000
	(8)	
*2.(a)(i) Valid criticism about the instruction or response boxes. e.g. 'You may want to tick more than one box.' or 'You may have used it to do something else like go on the internet.' or 'You may not have done any of these things.'	E1	Do not allow e.g. 'They may not have a mobile phone.'
*2.(a)(ii) Valid criticism about the vagueness of the times used e.g. 'It does not say what a lot means.'	E1	
*2.(b)(i) Valid comment. e.g. 'Not reliable as only 5 students.' or 'Not very reliable, she needs to ask more people'	E1	
*2.(b)(ii) SIM only is better because e.g. 'the bills are less varied (as the range is $£ 3$ compared to $£ 65$ for Pay-as-you-go.)' or 'SIM only bills are all about the same' or 'Pay-as-you-go bills are more spread out'. Pay-as-you-go is better because e.g. 'the average monthly cost is less (as the mean is $£ 12.75$ compared to $£ 16.25$ for SIM only.' or 'Most Pay-as-you-go bills will be less than $£ 12.75$ ' or 'The mean Pay-as-you-go bill is lower than the lowest SIM only bill.'	E1 E1	Do not allow e.g. 'it has the cheaper highest bill.' Do not allow e.g. 'it has the cheaper lowest bill.'
	(5)	

$\begin{aligned} & \text { *3.(a) } \\ & \binom{9}{9.5} \end{aligned}$	B2	B1 for each element or for $2 \mathbf{p}=\binom{10}{8}$ or equivalent seen or for $\left(\frac{9}{9.5}\right)$ or for ${ }_{9.5}^{9}$ or for $\frac{9}{9.5}$
*3.(b) Line of correct length and direction:	B2	B1 for correct length but direction omitted or incorrect or for correct direction but incorrect length
	(4)	
*4. Correct construction with arcs	B2	B1 for correct arcs Tolerance $\pm 2^{\circ}$
	(2)	
$\begin{aligned} & { }^{*} 5 .(\mathrm{a}) \\ & x^{2}-3 x-10 \end{aligned}$	B2	B1 for $x^{2}-3 x+\ldots$ or for any three correct terms in $x^{2}+2 x-5 x-10$
$\begin{aligned} & * 5 .(\mathrm{b}) \\ & 18 a \end{aligned}$	B2	Accept $18 a^{1}$ for 2 marks. B1 for $k \times a^{1}$ or equivalent
	(4)	
*6.(a)(i) y is inversely proportional to x indicated	B1	
$\begin{aligned} & \text { *6.(a)(ii) } \\ & (x=) 0.25 \text { or equivalent } \end{aligned}$	B2	B1 for $100=\frac{25}{x}$ seen Do not accept $y=0.25$ or equivalent
$\begin{aligned} & * 6(\mathrm{~b}) \\ & \frac{4}{0.8} \text { or equivalent } \\ & 5(\mathrm{~m} / \mathrm{s}) \end{aligned}$	M1 A1	Allow e.g. ' 1 metre every 0.2 seconds.'
	(5)	
$\begin{aligned} & \text { *7(a)(i) } \\ & 14 \pi \end{aligned}$	B1	allow 43.96
${ }_{4}^{* 7(a)(\text { (ii) }}$	B1	

*7(b) (diameter =) $6(\mathrm{~cm})$ 9π or $\pi \times 9$ or equivalent	$\begin{aligned} & \text { B1 } \\ & \text { B2 } \end{aligned}$	May be on diagram Mark final answer B1 for $\pi \times 3^{2}$ or equivalent If no marks award SC1 for an answer of 36π or 144π
	(5)	
8. (a) $\begin{aligned} & \left(\frac{16}{5}-\frac{9}{7}=\right) \frac{112}{35}-\frac{45}{35} \text { or } 2-\frac{3}{35} \\ & \frac{67}{35} \text { or } 1 \frac{32}{35} \end{aligned}$	M2 A1	M1 for $\frac{112}{35}$ or $\frac{45}{35}$ or $2+\frac{7}{35}-\frac{10}{35}$
$\begin{array}{ll} \text { *8.(b) } \\ (a=) 28 & (b=) 35 \quad(c=) 55 \end{array}$	B3	B1 for each correct value or B2 for 35 and attempting 4×7 and 11×5 or for a set of values in the correct ratio that are not 2-digit e.g. 56, 70, 110 or B1 for a common multiple of 5 and 7 or for two pairs of two-digit numbers in the ratio $4: 5$ AND 7:11
*8.(c) $205 \div 5 \times 8$ or equivalent $328(\mathrm{~cm})$ or equivalent, CAO	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Must be a complete method
	(8)	

*9.(a) $3 \times \frac{4}{6} \times \frac{10}{5}$ or equivalent, seen or implied 4 (hours)	M2	May be in e.g.	or as	ments
		Workers	Tonnes	Hours
		6	5	2
		6	10	4
		or		
		Workers	Tonnes	Hours
		6	7.5	3
		6	10	4
		M1 for one implied $\text { e.g. } 3 \times \frac{10}{5}$ or one corr	rrect step $3 \times \frac{4}{6}$ statemen	g.
		Workers	Tonnes	Hours
		1	1.25	3
		6	5	2
		6	7.5	3
		4	10	6
		8	10	3
		or equivalen NB 4 worke given and d	5 tonnes s not sco	ours is on its own
	A1			
*9.(b) Valid assumption. e.g. 'The goods are all of the same type.' or 'The vehicles used are the same.' or 'The goods can all be loaded into one vehicle.'	E1			
		Do not allow e.g. ‘They can all lift the same weight.'		need to all lift
Valid impact. e.g. 'If the goods are heavier, they may take longer to load.' or 'The load time would be longer if the vehicle could not take all 10 tonnes at once.'	E1	Allow 'The load time would be longer if they had to take breaks.'		
	(5)			
10.(a) No (stated or implied) AND either a correct justification e.g. a comment such as 'He should have reversed the inequality sign in step 3 because he divided by -2 ' or ' it should be $x<\frac{-7}{-2} \quad x<3.5^{\prime}$ or showing by substitution an example of a value of $x>3.5$ is not a solution of the original inequality or showing by substitution an example of a value of of $x<3.5$ is a solution of the original inequality	E2	E1 for No and a partially correct justification. e.g. Stating that step 3 is incorrect. or stating that e.g. $x=4$ is not a solution (no subst seen) or stating the answer should be $x<3.5$ or stating that e.g. $x=2$ is not a solution (no subst seen)		

Sight of 8500 (grams) or $8.5(\mathrm{~kg})$ AND 10.5 (kg) or 10500 (grams)	B2	If units are given they must be correct. B1 for either
$\begin{aligned} & 4 \times 10.5+20 \times 8.5 \text { or } \\ & \frac{215-4 \times 10.5}{20} \text { or } \frac{215-20 \times 8.5}{4} \end{aligned}$	M1	FT 'their 8.5 and 10.5 ' providing all are in the same units, 'their 8.5 ' > 8.4 and 'their 10.5 ' > 10
212 or 8.65 or 11.25	A1	CAO
$212 \mathrm{~kg}<215 \mathrm{~kg}$ or $8.65 \mathrm{~kg}>8.5 \mathrm{~kg}$ or $11.25 \mathrm{~kg}>10.5 \mathrm{~kg}$ or equivalent AND Mahima is correct.	E1	Dependent on at least B1 M1 having been previously awarded FT 'their 212' <215 Comparison with 215 must be seen or implied Allow 'Mahima is wrong' if 'their 212' > 215
	(5)	
13. $y(w-2 x)=5+x$	M1	FT until second error. Correctly clears the fraction.
$w y-2 x y=5+x$	M1	Multiplies out.
$w y-5=x+2 x y$ or equivalent	M1	Collects x terms to one side.
$w y-5=x(1+2 y)$	M1	Factorises
$x=\frac{w y-5}{1+2 y}$	A1	Divides Final answer; must be $x=\ldots$ not $-x=\ldots$
	(5)	
14. $\begin{aligned} & (\sqrt[3]{64}=) 2^{\frac{6}{3}} \text { or } 2^{2} \\ & \left(4^{9}=\right)\left[2^{2}\right]^{9} \text { or } 2^{18} \end{aligned}$ 2^{2-4+18} or equivalent 2^{16}	B1 B1 M1 A1	FT 'their 18' and 'their 2' providing both are positive Complete method required. CAO
		Alternative method 1: $\sqrt[3]{64} \times 4^{9}=4^{10}$ seen or implied $\left(4^{10}=\right)\left[2^{2}\right]^{10}$ or $\left(2^{-4}=\right) 4^{-2}$ seen or implied 2^{20-4} or 4^{10-2} or equivalent M1 2^{16}
		Alternative method 2: $\left(2^{-4}=\right) \frac{1}{16}$ seen or implied $\sqrt[3]{64} \times \frac{1}{16}=\frac{1}{4}$ seen or implied B1 4^{9-1} or equivalent 2^{16}
	(4)	

17.(b) $\begin{aligned} & x=(-2+4 \sqrt{3})^{2}+(1+2 \sqrt{3})^{2} \\ & 4-8 \sqrt{3}-8 \sqrt{3}+16(3)+ \\ & 1+2 \sqrt{3}+2 \sqrt{3}+4(3)=65-12 \sqrt{3} \end{aligned}$	M1 A1	FT 'their $-2+4 \sqrt{3}$ ' for M1 only NB Answer is given
	(6)	
18.(a) Correct explanation. e.g. $\frac{8}{6}=\frac{4}{3}$ and $6^{2}+8^{2}=10^{2}$ or equivalent or draws a 3,4,5 triangle and a 6,8,10 triangle and states they are similar	B2	Must use both the gradient and the length of $O A$. B1 for a correct partial explanation e.g. $\frac{8}{6}=\frac{4}{3}$ or $6^{2}+8^{2}=10^{2}$ or equivalent or draws a 3,4,5 triangle and a 6,8,10 triangle
18.(b) $\begin{aligned} & (\text { Gradient of tangent }=) \frac{-1}{4 / 3} \\ & 8=-\frac{3}{4} \times 6+c \\ & y=-\frac{3}{4} x+\frac{25}{2} \text { or equivalent } \\ & 0=-\frac{3}{4} x+\frac{25}{2} \\ & \left(\frac{50}{3}, 0\right) \text { or equivalent } \end{aligned}$	M1 m1 A1 M1 A1	FT 'their $-3 / 4$ ' CAO FT their equation of $A B$ providing the gradient is negative. Allow a final answer of $x=\frac{50}{3}$
		Alternative method 1: Identifies similar triangles $O A X$ and $O B A$, seen or implied M1 $\frac{10}{6}=\frac{O B}{10}$, seen or implied M1 $O B=10 \times \frac{10}{6}$ $O B=\frac{100}{6}$ or equivalent CAO $B\left(\frac{50}{3}, 0\right)$ or equivalent Alternative method 2: Identifies similar triangles OXA and $A X B$, seen or implied M1 $\frac{B X}{8}=\frac{8}{6}$, seen or implied M1 $O B=8 \times \frac{8}{6}+6$ M1 $O B=\frac{100}{6}$ or equivalent CAO $B\left(\frac{50}{3}, 0\right)$ or equivalent

		Alternative method 3: $\tan A O B=\frac{4}{3}$ M1 $\cos A O B=\frac{3}{5}$ $\left(\cos A O B=\frac{O A}{O B}=\right) \quad \frac{10}{O B}=\frac{3}{5} \quad \boldsymbol{M 1}$ $O B=\frac{50}{3}$ or equivalent CAO A1 $B\left(\frac{50}{3}, 0\right)$ or equivalent Alternative method 4: Identifies similar triangles $O A X$ and $O B A$, seen or implied M1 $A B=10 \times \frac{8}{6}$, seen or implied $O B=\sqrt{10^{2}+\left(\frac{40}{3}\right)^{2}}$ M1 $O B=\frac{50}{3}$ or equivalent CAO $B\left(\frac{50}{3}, 0\right)$ or equivalent Alternative method 5: (Gradient $A B=$) $\frac{-1}{4 / 3}$, seen or implied M1 $-\frac{3}{4}=-\frac{8}{B X}$, seen or implied M1 $O B=8 \times \frac{4}{3}+6$ $O B=\frac{100}{6}$ or equivalent CAO $B\left(\frac{50}{3}, 0\right)$ or equivalent
	(7)	

