GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - COMPONENT 2 (FOUNDATION TIER) C300U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE MATHEMATICS
AUTUMN 2020 MARK SCHEME

\begin{tabular}{|c|c|c|}
\hline GCSE (9-1) Mathematics Component 2: Foundation Tier \& Mark \& Comment \\
\hline \[
\begin{aligned}
\& \text { 1.(a) } \\
\& 108
\end{aligned}
\] \& B1 \& \\
\hline \[
\begin{aligned}
\& 1 .(\mathrm{b}) \\
\& 29
\end{aligned}
\] \& B1 \& \\
\hline \[
\begin{aligned}
\& 1 .(\mathrm{c}) \\
\& 18
\end{aligned}
\] \& B1 \& \\
\hline \[
\begin{aligned}
\& 1 .(\mathrm{d}) \\
\& 343
\end{aligned}
\] \& B1 \& \\
\hline \& (4) \& \\
\hline \[
\begin{aligned}
\& \text { 2. (a) } \\
\& (34 \times 6) \div 8 \\
\& =25.5
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
May be seen in stages. \\
If no marks, award SC1 for sight of 204.
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 2.(b) } \\
\& (80-14) \div 5.75 \\
\& 11
\end{aligned}
\] \& M2

A1 \& | May be implied by $14+5.75 \times 11=77.25$ from trials |
| :--- |
| M1 for a correct trial of $14+5.75 \times n$ where $n>1$ or |
| M1 for 80-14 |
| CAO |
| An answer or 11.4(7...) or 11.5 implies M2 A0. $14+5.75 \times 11=77.25$ gains M2 A0 unless 11 days is indicated as their answer. |

\hline \& (5) \&

\hline \& | M2 |
| :--- |
| A1 | \& | May be in pence but units must be consistent M1 for sight of any one of |
| :--- |
| - $4 \times 2.74(=10.96)$ |
| - $\quad 4 \times 0.62(=2.48)$ |
| - $\quad 2.74+0.62(=3.36)$ |
| If units are given, they must be correct. |
| Allow £13.44p |
| If no marks, award |
| SC2 for an answer of (£)10.08 or SC1 for $(2.74+0.62) \times 3$ |

\hline | 3.(a)(ii) |
| :--- |
| (£)6.56 or 656(p) | \& B1 \& FT 'their (£) 13.44 ' If units are given, they must be correct. Allow £6.56p

\hline $$
\begin{aligned}
& \text { 3.(b) } \\
& 2.74+0.62+1.15-3.79 \\
& (£) 0.72 \text { or } 72(p)
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
$$
\] \& May be in pence but units must be consistent FT 'their 3.36 ' $+1.15-3.79$ If units are given, they must be correct. Allow $£ 0.72$ p

\hline \& (6) \&

\hline 4.(a)(i) \& \&

\hline $$
\begin{aligned}
& 4 .(\mathrm{a})(\mathrm{ii}) \\
& 7
\end{aligned}
$$ \& B1 \&

\hline $$
\begin{aligned}
& 4 .(\mathrm{a})(\mathrm{iii}) \\
& 98
\end{aligned}
$$ \& B1 \&

\hline
\end{tabular}

8.(a) $\frac{1}{500}$ oe	B1	ISW Do not accept incorrect notation e.g ' 1 out of 500 '
$\frac{300}{500} \text { or } 0.6 \text { oe }$	B1	ISW Do not accept incorrect notation e.g '300 out of 500' NOTE: If no marks awarded in (a) or (b) award SC1 for consistent incorrect notation e.g ' 1 out of 500 ' AND ' 300 out of 500 '.
8.(c) No and a correct explanation e.g. 'The probability is $\frac{8}{500}$ (so less than 50%)' 'He has less than half the tickets so less than 50\% chance.' 'He would have to buy 250 tickets to have a 50% chance of winning.'	E1	Allow e.g. 'Ben winning and losing are not equally likely.' 'He will have an 8 in 500 chance of winning.' 'He needs more tickets to have a 50% chance.' 'He hasn't bought 50\% of the tickets.' Do not allow e.g. 'Winning and losing are not equally likely.' 'he only has 8 out of 500 tickets'
$\begin{aligned} & \text { 8.(d)(i) } \\ & 0.99 \text { oe } \end{aligned}$	B1	
$\begin{aligned} & \text { 8.(d)(ii) } \\ & 0.01 \times 500 \text { or } 500-(0.99 \times 500) \\ & =5 \text { (tickets) } \end{aligned}$	M1 A1	Accept $\left(\frac{1}{100}=\right) \frac{5}{500}$ for M1
9. $58.5-1.8 \times 12.5(0)(=36)$ $\begin{aligned} & 36 \div 3.2=(£) 11.25 \text { or } \\ & 36 \div 11.25=3.2(\mathrm{~m}) \text { or } \\ & 3.2 \times 11.25=(£) 36 \end{aligned}$	M2 A1	M1 for $1.8 \times 12.5(0)(=22.50)$ Convincing correct final step Dependent on M2
Alternative method 1 $\begin{aligned} & 1.8 \times 12.5(0)+3.2 \times 11.25 \\ & 36+22.5(0)=(£) 58.5(0) \end{aligned}$	M2 A1	M1 for either $1.8 \times 12.5(0)(=22.50)$ or for $3.2 \times 11.25(=36)$ Convincing correct final step
Alternative method 2 $1.8 \times 12.5+3.2 y=58.50$ $3.2 y=58.50-22.5$. or $3.2 y=36$ (y) $36 \div 3.2=$ (£) 11.25	M1 M1 A1	Allow other notation
	(3)	

\begin{tabular}{|c|c|c|}
\hline 10. (a) CC CV CS SS SV VV oe \& B2 \& B1 for 4 or 5 correct Ignore inclusion of VC, SC and VS oe \\
\hline \[
\left[\begin{array}{lll}
10 .(\mathrm{b}) \& \& \\
\& \times 2 \& \\
\& \& \div 125 \\
\& \& \times 43.5(0) \\
(21 \times 43.50 \& = \& (£) 913.5(0)
\end{array}\right.
\] \& M1
M1
M1
A2 \& \begin{tabular}{l}
Method marks may be awarded in any order
\[
\begin{aligned}
\& (=2600) \\
\& (=20.8)
\end{aligned}
\] \\
CAO \\
Award M3 A1 for (£)904.8(0) (from \(20.8 \times 43.50\)) \\
Award M2 SC2 for (\(£\))478.5(0) (from \(11 \times 43.50\)) \\
Award M2 SC1 for (\(£\)) \(452.4(0)\) (from \(10.4 \times 43.50\))
\end{tabular} \\
\hline \begin{tabular}{l}
Alternative method finding \(t\), the number of tubs using trial(s) \\
Use of trial(s) of \(125 \times t\) OR \(125 \div 2 \times t\) where \(t>8\) \\
\(t=21\) from correct calculations in relevant trial(s) seen
\[
125 \times 20=2500,125 \times 21=2625
\] \\
OR
\[
62.5 \times 20=1250, O R 62.5 \times 21=1312.5
\] \\
Calculating the cost
\[
21 \times 43.5(0)=
\] \\
(£)913.5(0)
\end{tabular} \& M1
A2

M1

A1 \& | A1 if $t=21$ but an error in the relevant calculation(s) seen |
| :--- |
| If M1 A0 award SC1 for $t=11$ with no errors in relevant calculation(s) seen $125 \times 10=1250,125 \times 11=1375$ |
| FT 'their t' for M1 only |
| CAO |
| If M1 A0 award SC1 for (£)478.5(0) |
| (from 11×43.50) |
| Award M1 A1 M1 A1 for (£)904.8(0) (from trial(s) with an error) |
| Award M1 SC1 M1 SC1 for (£)478.5(0) (from trial(s) with no error) |
| Award M1 SC0 M1 SC1 for (£)478.5(0) (from trial(s) with an error) |

\hline \& (7) \&

\hline $$
\begin{aligned}
& \text { 11.(a) } \\
& 6500-(12.5 \times 6500) \div 100 \text { or } \\
& 6500 \times(100-12.5) \div 100 \text { oe } \\
& \text { (£) } 5687.5(0)
\end{aligned}
$$ \& M2

A1 \& M1 for $(12.5 \times 6500) \div 100$ oe or ($£$) 812.5(0) If a partitioning method is used to find 12.5%, it must be a fully correct method.

\hline $$
\begin{aligned}
& 11 .(\mathrm{b}) \\
& 875 \times 0.06 \times 3 \text { oe } \\
& (£) 157.5(0)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | May be seen in stages. |
| :--- |
| ISW |
| If no marks, award |
| SC1 for a sight of ($£$)52.5(0) OR |
| SC1 for a final answer of ($£$)1032.5(0) |

\hline $$
\begin{aligned}
& 11 .(\mathrm{c}) \\
& 200(\%)
\end{aligned}
$$ \& B1 \&

\hline
\end{tabular}

12. (a)(i)			B2	B1 for one correct
	Bar	ira		
Range	48	42		
Median	185	183		
12.(a) (ii) Samira because range is smaller			B1	FT their table Allow e.g 'Samira as her distances are less spread out (than Barry)' 'Samira as the numbers are closer together' Do not allow e.g 'Samira, her miles are more consistent'
$\begin{aligned} & 12 .(b)(\text { i) } \\ & 3405 \times 12 \text { or } 40000 \div 12 \\ & 40860(>40000) \text { or } 3333(.33 \ldots)(<3405) \end{aligned}$			M1 A1	Accept 3400×12 Allow equivalent calculations using distance per day. Accept 40800 Allow 40900 and 41000 from correct working.
12.(b) (ii) Relevant assumption e.g. 'She has assumed that the month was typical.' Or 'She has assumed that she will drive the same distance each month' Correct effect of assumption e.g. 'If other months were busier, she would drive further.'			E1	Do not accept 'there are 12 months in a year' Dependent on the assumption mark being awarded. Allow both the assumption and explanation written here.
			(7)	
13.(a) $2 \times 2 \times 5$ or $1 \times 4 \times 5$ or $1 \times 2 \times 10$ or $1 \times 1 \times 20$ oe 13.(b) Correct explanation Eg 'she needs to $\div 6$ first' she has done things in the wrong order' 'you need to square root the area of a face' ' $144 \div 6$ first'			B1	Accept any clear representation of correct dimensions
			B1	$\begin{aligned} & \text { Do not allow e.g } \\ & ‘ \div 6^{\prime} \\ & ‘ 144 \div 6 \end{aligned}$
			(2)	

$\begin{aligned} & \text { 14.(a) } \\ & 30 \div 1.6 \\ & 18.75 \text { (miles per second) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Do not ISW but award M1A0 if $30 \div 1.6$ or 18.75 are seen with further incorrect work.
$\begin{aligned} & \text { li4.(b)(i) } \\ & 1.6 \times 1.6 \text { or } 1.6^{2} \\ & 2.56\left(\mathrm{~km}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
14.(b)(ii) 512 million or 512000000	B2	FT their answer to (b)(i) and award: B2 for the correct evaluation of $200000000 \times$ 'their 2.56 ' For example, with an answer of 4 in (i) award B2 for 800000000 or 800 million B1 for the correct evaluation of $20000000 \times$ 'their 2.56 ' OR $2000000000 \times$ 'their 2.56 ' (a place value error of a power of 10 only)
	(6)	

$\begin{aligned} & \text { 19.(a) } \\ & -2,-1,0,1,2 \end{aligned}$	B2	B1 $-2 \leq n<3$ or $-2,-1,0,1,2,3$ or $-1,0,1,2$ or $-4,-3,-2,-1,0,1,2,3,4,5$ or $-2-112$
19.(b) A straight line with an empty circle at 23 and a solid circle at 28.	B2	B1 for a line joining two circles in the correct position but incorrectly shaded. B1 for a correct circle at one end and a line going from it in the correct direction.
	(4)	
20*. (Interior angle of the heptagon =) $180-360 \div 7$ OR $(7-2) \times 180 \div 7$ OR $(7 \times 180-360) \div 7$ $=128.6\left({ }^{\circ}\right) \text { or } 128.57(\ldots)\left({ }^{\circ}\right)$ (Unique angle in triangle $=$) $(360-90-90-128.6=) 51.4\left(28 \ldots{ }^{\circ}\right)$ Working to show that $x=64.3$ to 1 d.p. $(180-51.4(28 \ldots)) \div 2=64.285 \text { to } 64.3$	M1 A1 B1 B1	May be seen on diagram. FT 'their derived 128.6' May be seen on diagram. CAO
Alternative method 1 working from 64.3 (Unique angle in triangle =) $\left[\begin{array}{ll} (180-64.3-64.3) & =51.4 \\ (\text { Interior angle of the heptagon }=) & =128.6 \\ (360-90-90-51.4) & =1 \end{array}\right.$ (Interior angle of the heptagon =) $180-(360 \div 7)$ $O R(7-2) \times 180 \div 7$ $O R(7 \times 180-360) \div 7$ $=128.6\left(^{\circ}\right) \text { or } 128.57(\ldots)\left(^{\circ}\right)$	B1 B1 M1 A1	FT 'their 180-64.3-64.3' Only awarded if this is clearly the interior angle of the heptagon
Alternative method 1a for final 2 marks (Sum of the interior angles of a heptagon=) $(7-2) \times 180$ o.e AND 128.6×7	M1	M0 for 'their 128.6×7 ' $=900(.2)$ alone
900	A1	Allow for 900 and 900.2
Alternative method 2 using exterior angles Exterior angle (of the heptagon) = $360 \div 7$ $=51.4\left(28 \ldots{ }^{\circ}\right)$	M1 A1	Method must be seen
(Unique angle in triangle $=$) $\begin{array}{r} \left(360-90-90-\left(180-51.4\left(28 \ldots .^{\circ}\right)\right)\right. \\ =51.4\left(28 \ldots{ }^{\circ}\right) \end{array}$	B1	May be seen on diagram. FT 'their derived 51.4(28...)
Working to show that $(x=)(180-51.4(28 \ldots)) \div 2=64.3$	B1	May be seen on diagram. CAO
	(4)	

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
21.* \\
\((1-0.8(0)) \times 40\) \\
OR \(40-0.8(0) \times 40\) \\
OR \((0.15+0.05) \times 40\) \\
OR \(0.15 \times 40+0.05 \times 40\) \\
8
\end{tabular} \& M2

A1 \& | M1 for sight of one of the following: |
| :--- |
| - $1-0.8(0)$ |
| - $0.15+0.05$ |
| - $0.2(0)$ |
| - $0.8(0) \times 40$ |
| - 32 |
| - 0.15×40 |
| - 0.05×40 |
| CAO |

\hline \& (3) \&

\hline $$
\begin{aligned}
& \text { 22.* } \\
& (h=) \frac{500}{\pi \times 3.5^{2}}=500 / 38.4(8 . .) \\
& (h=) 12.98(\ldots) \text { to } 13(\mathrm{~cm})
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M2 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | M1 for $500=\pi \times 3.5^{2} \times h$ |
| :--- |
| CAO not from incorrect working If no marks award SC1 for an answer of: 25.97 to $26(.0)$ from $500=\frac{1}{2} \pi \times 3.5^{2} \times h$ OR 38.96 to $39(.0)$ from $500=\frac{1}{3} \pi \times 3.5^{2} \times h$ |

\hline \& (3) \&

\hline | 23.(a)(i) |
| :--- |
| Any valid reason e.g. |
| '10 years is too far ahead to predict.' |
| 'the paper might not be produced if sales |
| continue to fall' |
| 'the change each time is not consistent.' | \& B1 \& | If a satisfactory reason is given ignore further spurious comments. |
| :--- |
| Allow e.g. 'because the sales may not follow the pattern of the graph.' |
| 'there is not an equal; drop in numbers sold every 5 years' |
| 'it's too far in the future, we can't tell' 'it could increase instead of decrease' 'more people may read the paper on the internet' |
| Do not allow statements that do not relate to the graph e.g. 'there might be more or less than 10000 sold in 2025' as no reference to the trend 'we can't tell' as no reference to time or trend |

\hline $$
\begin{aligned}
& (100 \times) \frac{62(000)-26(000)}{62(000)} \\
& \text { OR }(100 \times) 0.58(\ldots) \text { or }(100 \times)\left(1-\frac{26(000)}{62(000)}\right) \\
& \text { OR }(100 \times)(1-0.419) \text { or }(100 \times)(1-0.42) \\
& 58(.06 \ldots \%) \text { or } 58.1(\%)
\end{aligned}
$$ \& M1

A1 \& If no marks award SC1 for an answer of 41.9(3...\%), allow 42(\%) from evaluation of 26000/62000 $\times 100$ but not from trials.

\hline (b)

\[
$$
\begin{aligned}
& 52000000 \div(16+9) \times 16 \\
& 33280000
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| (5) | \& Allow a place value slip in 52000000 for M1 only Allow 33000000 and 33300000

\hline
\end{tabular}

24.*		
$5 x+40=6 x+20$	M1	Allow for $5 \times 20+40=6 \times 20+20$ which may be seen in stages
$x=20$	A1	
$5 \times 20+40+y+35=180$ OR	M2	FT 'their 20' for possible M2 provided previous M1
$6 \times 20+20+y+35=180$ OR		awarded.
$5 \times 20+40+2(y+35)+6 \times 20+20=360$		May be seen in stages.
		M1 for a correct equation $5 x+40+y+35=180$ or $6 x+20+y+35=180$ or $5 x+40+y+35+6 x+20+y+35=360$
$y=5$	A1	CAO
24. * Alternative method (using simultaneous equations)		
Writes two correct equations in x and y	M2	M1 for each correct equation
$\begin{aligned} & 5 x+40+y+35=180 \\ & \text { or } 6 x+20+y+35=180 \\ & \text { or } 5 x+40+y+35+6 x+20+y+35=360 \end{aligned}$		
Method to eliminate variable, e.g. equal coefficients and method to find second variable	m1	Allow one error in one term but not with equal coefficients
Finds the value of the first variable	A1	$\begin{aligned} & C A O \\ & x=20 \text { OR } y=5 \end{aligned}$
Second variable	A1	FT 'their first variable'
	(5)	
25.*		
Correct perpendicular bisector construction with appropriate arcs	B2	B1 for perpendicular bisector within tolerance $\left(\pm 2^{\circ}\right)$ without arcs or with invalid arcs or for a
	B2	correct pair of arcs that intersect twice. B1 for angle bisector within tolerance
Correct angle bisector construction of $X O Y$ with appropriate arcs	B2	$\left(\pm 2^{\circ}\right)$ without arcs or with invalid arcs or for a correct pair of arcs
Correct point indicated	B1	FT provided at least B1, B1 awarded; may be implied by intersecting loci
	(5)	
26.*(a) ${ }^{\text {a }}$ (${ }^{2}$		
$\begin{aligned} & \left(x^{2}=\right) 11.3^{2}-8.6^{2} \\ & x^{2}=53.73 \text { or }(x=) \sqrt{ } 53.73 \end{aligned}$	M1 A1	
$(x=) 7.3(3 \ldots \mathrm{~cm})$	A1	FT from M1 for the correctly evaluated square roo of 'their 53.73' provided $x<11.3$
		If no marks, award SC2 for an answer of $7.3(3 \ldots \mathrm{~cm})$ seen from use of $8.6^{2}-11.3^{2}$
(b) -------------------		
$\cos (\mathrm{y})=8.6 \div 13.5$	M1	Accept any equivalent full method
$\begin{aligned} & (y=) \cos ^{-1}(8.6 \div 13.5) \\ & (y=) 50\left(.4 \ldots 0^{\circ}\right) \end{aligned}$	m1	
	A1	
	(6)	

