

GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS – COMPONENT 2
(FOUNDATION TIER)
C300U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE MATHEMATICS

AUTUMN 2020 MARK SCHEME

GCSE (0-1) Mathematics		
GCSE (9-1) Mathematics Component 2: Foundation Tier	Mark	Comment
1.(a)		
108	B1	
1.(b)	· 	
29 1	B1	
1.(c)	·	
10	B1	
1.(d)	·	
2/12	B1	
1949	(4)	
	(+)	
2. (a)		
$(34 \times 6) \div 8$	M1	May be seen in stages.
= 25.5	A1	Iviay be seen in stages.
- 23.3	^'	If no marks, award SC1 for sight of 204.
2.(b)		in no marks, award 501 for signt of 204.
(80 – 14) ÷ 5.75	M2	May be implied by $14 + 5.75 \times 11 = 77.25$ from
(00 14) - 0.10	IVIZ	trials
		M1 for a correct trial of $14 + 5.75 \times n$ where $n > 1$
		or $n = 10^{-14} + 5.75 \times n$ where $n > 1$
		M1 for 80 – 14
11	A1	MT 10F 80 = 14 CAO
	AI	
		An answer or 11.4(7) or 11.5 implies M2 A0.
		$14 + 5.75 \times 11 = 77.25$ gains M2 A0 unless 11
	(5)	days is indicated as their answer.
	(5)	
3.(a)(i)		May be in pence but units must be consistent
$(2.74 + 0.62) \times 4$	M2	M1 for sight of any one of
(2.74 1 0.02) ^ 4	IVIZ	• 4 × 2.74 (=10.96)
		• 4 × 0.62 (=2.48)
(0)40,44 4044(.)		• 2.74 + 0.62 (=3.36)
(£)13.44 or 1344(p)	A1	If units are given, they must be correct.
		Allow £13.44p
		Mary made and and
		If no marks, award
		SC2 for an answer of (£)10.08 or
		SC1 for (2.74 + 0.62) × 3
3 (2)(ii)	.	
3.(a)(ii)	D4	ET 'thoir (C)12 44'
(£)6.56 or 656(p)	B1	FT 'their (£)13.44'
		If units are given, they must be correct.
]		Allow £6.56p
3.(b)	N 4 4	May be in pence but units must be consistent
2.74 + 0.62 + 1.15 - 3.79	M1	FT 'their 3.36' + 1.15 – 3.79
(£)0.72 or 72(p)	A1	If units are given, they must be correct.
		Allow £0.72p
	(6)	
4.(a)(i)		
··(\(\alpha\)(\(\beta\)	B1	
1	"	
. ***		
-		
4.(a)(ii)		·····
4.(a)() 7	B1	
	·	····
	B1	
98 © WJEC CBAC Ltd.	.L <u>P.</u> l	1

6.(b)(i) (7, 2) marked 6.(b)(ii) (7, 2) B1 FT 'their E' 7.(a) (2214) ÷ 4 or 9 or equivalent 17(:)00 or 5 p.m. the marked points are unambiguous. Allow repeated subtraction of 4 nine times with one arithmetic error An answer of 5 a.m. or 5 o'clock implies M1A0	4.(b) (Number of triangles =) 2 × number of squares oe	B1	Allow e.g. '2 × squares' 'double the number of squares' 'squares doubled' 'S x 2' Do not allow e.g. '× 2' '2 × pattern number' 'for each square there are two triangles' 'one square and two triangles' 'the triangles go up in two's the square's go up in one's'
(x =) 180 - 40 - 77 (53(°) (y =) 180 - 90 - 32 (y =) 180 - 90 - 32 (s6.(a) (-1, -3) and (3, -3) marked (a) (b) (a) (b) (c) (a) (b) (d) (d) (e) (e) (e) (e) (f) (f) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g		(4)	
6.(a) (-1, -3) and (3, -3) marked B2 B1 for two points that make a rectangle Ignore not labelled or incorrectly labelled points the marked points are unambiguous. 6.(b)(i) (7, 2) marked B1 FT 'their E' 7.(a) (2214) ÷ 4 or 9 or equivalent 17(:)00 or 5p.m. B2 B1 for two points that make a rectangle Ignore not labelled or incorrectly labelled points the marked points are unambiguous.	(x =) 180 - 40 - 77 63(°) 5.(b) (y =) 180 - 90 - 32	M1 A1 M1 A1	
Ignore not labelled or incorrectly labelled points in the marked points are unambiguous. 6.(b)(i) (7, 2) marked 6.(b)(ii) (7, 2) B1 FT 'their E' 7.(a) (2214) ÷ 4 or 9 or equivalent 17(:)00 or 5 p.m. Ignore not labelled or incorrectly labelled points in the marked points are unambiguous. Ignore not labelled or incorrectly labelled points in the marked points are unambiguous. Ignore not labelled or incorrectly labelled points in the marked points are unambiguous. Ignore not labelled or incorrectly labelled points in the marked points are unambiguous. Ignore not labelled or incorrectly labelled points in the marked points are unambiguous. Ignore not labelled or incorrectly labelled points in the marked points are unambiguous.		, ,	D4 factors resists that walls are to
(7, 2) marked B1 6.(b)(ii) (7, 2) B1 FT 'their E' (4) 7.(a) (2214) ÷ 4 or 9 or equivalent 17(:)00 or 5 p.m. B1 Allow repeated subtraction of 4 nine times with one arithmetic error An answer of 5 a.m. or 5 o'clock implies M1A0	-4 -3 -2 -1 0 1 2 3 4 5 6 7 x (D) -3 (C)	B2	Ignore not labelled or incorrectly labelled points if
7.(a) (2214) ÷ 4 or 9 or equivalent M1 Allow repeated subtraction of 4 nine times with one arithmetic error A1 An answer of 5 a.m. or 5 o'clock implies M1A0	(7, 2) marked 3 4 2 1 1 1 2 3 4 5 6 7 x	B1	
7.(a) (22 – -14) ÷ 4 or 9 or equivalent M1 Allow repeated subtraction of 4 nine times with one arithmetic error A1 An answer of 5 a.m. or 5 o'clock implies M1A0			FT 'their <i>E'</i>
1 / //	(2214) ÷ 4 or 9 or equivalent	M1	one arithmetic error
7.(b) 7 (°F) B1 Allow 6.5 to 7.5 inclusive.	7.(b)	B1	

8.(a)		
0.(a) 1		
oe oe	B1	ISW
500		Do not accept incorrect notation e.g
		'1 out of 500'
8.(b)	[
300		
500 or 0.6 oe	B1	ISW
300		Do not accept incorrect notation e.g
		'300 out of 500'
		NOTE: If no marks awarded in (a) or (b) award
		SC1 for consistent incorrect notation
		e.g '1 out of 500' AND '300 out of 500'.
8.(c)	<u> </u>	0.9 1 001 01 000 71115 000 001 01 000 .
No and a correct explanation e.g.	E1	Allow e.g.
'The probability is 8 (so less than 50%)'		'Ben winning and losing are not equally likely.'
500		'He will have an 8 in 500 chance of winning.'
'He has less than half the tickets so less		'He needs more tickets to have a 50% chance.'
than 50% chance.'	1	'He hasn't bought 50% of the tickets.'
'He would have to buy 250 tickets to have a		
50% chance of winning.'		Do not allow o a
		Do not allow e.g.
		'Winning and losing are not equally likely.' 'he only has 8 out of 500 tickets'
		The only has o out of 500 tickets
8.(d)(i)	l	· · · · · · · · · · · · · · · · · · ·
0.99 oe	B1	
8.(d)(ii)		, (1) 5 , ,,,
0.01 × 500 or 500 – (0.99 × 500)	M1	Accept $\left(\frac{1}{100}\right) = \frac{5}{500}$ for M1
5 (0.1.4.)		
= 5 (tickets)	A1	
9.	(6)	
58.5 – 1.8 × 12.5(0) (= 36)	M2	M1 for 1.8 × 12.5(0) (= 22.50)
36.5 - 1.6 ^ 12.5(0) (- 30)	IVIZ	NVI 101 1.8 × 12.3(0) (- 22.30)
	1	
$36 \div 3.2 = (£)11.25$ or	A1	Convincing correct final step
36 ÷ 11.25 = 3.2(m) or		Dependent on M2
$3.2 \times 11.25 = (£)36$		
 	ļ	
Alternative method 1		144.6 (4) 40.7(0) (20.70)
1.8 × 12.5(0) + 3.2 × 11.25	M2	M1 for either 1.8 × 12.5(0) (=22.50) or
26 + 22 5(0) - (5)50 5(0)	Λ1	for 3.2 × 11.25 (= 36)
36 + 22.5(0) = (£)58.5(0)	A1	Convincing correct final step
Alternative method 2	h	
$1.8 \times 12.5 + 3.2y = 58.50$	M1	Allow other notation
3.2y = 58.50 - 22.5. or $3.2y = 36$	M1	
,		
(y) 36 ÷ 3.2 = $(£)$ 11.25	A1	
	(3)	

10. (a) CC CV CS SS SV VV oe	B2	B1 for 4 or 5 correct Ignore inclusion of VC, SC and VS oe
10.(b) 1300 × 2 ÷ 125 × 43.5(0) (21 × 43.50 =) (£)913.5(0)	M1 M1 M1 A2	Method marks may be awarded in any order (= 2600) (= 20.8) CAO Award M3 A1 for (£)904.8(0) (from 20.8 × 43.50) Award M2 SC2 for (£)478.5(0) (from 11 × 43.50) Award M2 SC1 for (£)452.4(0) (from 10.4×43.50)
Alternative method finding t, the number of tubs using trial(s)		
Use of trial(s) of 125 × t OR 125 ÷ 2 × t where t > 8	M1	
t=21 from correct calculations in relevant trial(s) seen 125 × 20 = 2500, 125 × 21 = 2625, OR 62.5 × 20 = 1250, OR 62.5 × 21 = 1312.5	A2	A1 if t = 21 but an error in the relevant calculation(s) seen
		If M1 A0 award SC1 for t = 11 with no errors in relevant calculation(s) seen 125 × 10 = 1250, 125 × 11 = 1375
Calculating the cost 21 × 43.5(0) =	M1	FT 'their t' for M1 only
(£)913.5(0)	A1	CAO If M1 A0 award SC1 for $(£)478.5(0)$ (from 11 × 43.50) Award M1 A1 M1 A1 for $(£)904.8(0)$ (from trial(s) with an error) Award M1 SC1 M1 SC1 for $(£)478.5(0)$ (from trial(s) with no error) Award M1 SC0 M1 SC1 for $(£)478.5(0)$ (from trial(s) with an error)
	(7)	
11.(a) 6500 – (12.5 × 6500) ÷ 100 or 6500 × (100 – 12.5) ÷ 100 oe	M2	M1 for (12.5 × 6500) ÷ 100 oe or (£)812.5(0) If a partitioning method is used to find 12.5%, it must be a fully correct method.
(£) 5687.5(0) 11.(b) 875 × 0.06 × 3 oe (£)157.5(0)	M1 A1	May be seen in stages. ISW If no marks, award SC1 for a sight of (£)52.5(0) OR SC1 for a final answer of (£)1032.5(0)
200(%)	B1 (6)	

12. (a)(i)					
	Barry	Samira		B2	B1 for one correct
Range	48	42			
Median	185	183			
12.(a)(ii) Samira b	ecause	range	is smaller	B1	FT their table Allow e.g 'Samira as her distances are less spread out (than Barry)' 'Samira as the numbers are closer together' Do not allow e.g 'Samira, her miles are more consistent'
12.(b)(i) 3405 × 1	2 or 40	000 ÷	12	M1	Accept 3400 × 12 Allow equivalent calculations using distance per day.
40 860 (>	>40 000)) or 33	33(.33) (< 3405)	A1	Accept 40 800 Allow 40 900 and 41 000 from correct working.
assumed	l that th assum	e montl ed that	g. 'She has h was typical.' Or she will drive the onth'	E1	Do not accept 'there are 12 months in a year'
	nonths		ption e.g. usier, she would	E1	Dependent on the assumption mark being awarded.
					Allow both the assumption and explanation written here.
13.(a)				(7)	
			r 1 × 2 × 10	B1	Accept any clear representation of correct dimensions
	ds to ÷ done t d to squ	6 firsť hings ir	n the wrong order' ot the area of a face'	B1	Do not allow e.g '÷ 6' '144 ÷ 6'
·				(2)	

14.(a) 30 ÷ 1.6 18.75 (miles per second)	M1 A1	Do not ISW but award M1A0 if 30 ÷ 1.6 or 18.75 are seen with further incorrect work.
14.(b)(i) 1.6 × 1.6 or 1.6 ² 2.56 (km ²)	M1 A1	
14.(b)(ii) 512 million or 512 000 000	B2	FT their answer to (b)(i) and award: B2 for the correct evaluation of 200 000 000 × 'their 2.56' For example, with an answer of 4 in (i) award B2 for 800 000 000 or 800 million B1 for the correct evaluation of 20 000 000 × 'their 2.56' OR 2 000 000 000 × 'their 2.56' (a place value error of a power of 10 only)
	(6)	

ml per penny or similar Correctly evaluated calculations for at least two of the three sizes AND appropriate conclusion OR Correctly evaluated calculations that should enable comparison of all three. Correctly evaluated comparison of all three sizes, may be different comparisons at different stages AND correct conclusion "large bottle is best value for money" A1 Consistent units that are not obviously incorrect are required or allow no units given. Comparison of small/med and med/large is comparison of all three. Comparison of small/med and small/large is not a comparison of all three. (3) 18.(a) 366 ÷ (1+3) × 3 (£)274.5(0) A1 If M0 award SC1 for sight of (£)91.5(0) B1 for an answer of 6 : 10 oe SC1 for an answer of 3 : 2, (from halving not doubling and obtaining 6 : 4) or a final answer of			<u> </u>
1010 ×) 44 + 135	4.8 ± 0.2 $4.8 \times 50 = (240)$ $240 \div 5.75$ or $(240 \div 345) \times 60$	M1 M2 A1	FT 'their 4.8' FT 'their 240' Allow M1 for 'their 240' ÷ 'time' where 'their time' is an attempt at the time from 06:00 to 11:45 however expressed e.g 5.45 FT provided the previous M2 awarded Answers for use of 4.6 to 5(cm) Length 4.6 4.7 4.8 4.9 5.0
Alternative method 0.32 × 135 = 43.2(women) A greater proportion of women than men completed the survey. E1 Depends on M1 previously awarded. F7 their answer for appropriate statement indicated or unambiguously implied M1 16.(b) 0.4 × 0.2 × 225 oe 18 M2 M1 for 225 × 0.4 or 90 OR 0.4 × 0.2 or 0.08 oe CAO M2 M1 for 225 × 0.4 or 90 OR 0.4 × 0.2 or 0.08 oe CAO M3 Needs to show attempt to compare at least two of the three sizes AND appropriate conclusion OR Correctly evaluated calculations for at least two of the three sizes AND appropriate conclusion OR Correctly evaluated calculations that should enable comparison of all three. Correctly evaluated comparison of all three sizes, may be different comparisons at different stages AND correct conclusion "large bottle is best value for money" Comparison of small/med and med/large is comparison of all three. Comparison of all three. (3) 18.(a) 366 + (1+3)	(100 ×) 44 ÷ 135 =0.325() or 0.326 or 0.33 OR 32.5() or 32.6 or 33 (%) A greater proportion of women than men	A1	FT their answer for appropriate statement indicated or unambiguously implied
Indicated or unambiguously implied Indicated or unambiguously indicated	0.32 × 135 = 43.2(women) A greater proportion of women than men	A1	Depends on M1 previously awarded.
Method of comparison e.g. per 25ml, ml per penny or similar Correctly evaluated calculations for at least two of the three sizes AND appropriate conclusion OR Correctly evaluated calculations that should enable comparison of all three. Correctly evaluated comparison of all three sizes, may be different comparisons at different stages AND correct conclusion "large bottle is best value for money" A1 Consistent units that are not obviously incorrect are required or allow no units given. Comparison of small/med and med/large is comparison of all three. Comparison of small/med and small/large is not a comparison of all three. (3) 18.(a) 366 ÷ (1+3) × 3 (£)274.5(0) 18.(b) 3 : 5 B2 B1 for an answer of 6 : 10 oe SC1 for an answer of 3 : 2, (from halving not doubling and obtaining 6 : 4) or a final answer of 6 : 4) or a final answer of 6 in a comparison of small med and smally and small med and smally and obtaining 6 : 4) or a final answer of 6 in a comparison of smally and obtaining 6 : 4) or a final answer of 6 in a comparison of smally and obtaining 6 : 4) or a final answer of 6 in a comparison of smally and obtaining 6 : 4) or a final answer of 6 in a comparison of smally and obtaining 6 in a comparison of all three.	16.(b) 0.4 × 0.2 × 225 oe 18	A1	indicated or unambiguously implied M1 for 225 × 0.4 or 90 OR 0.4 × 0.2 or 0.08 oe
sizes, may be different comparisons at different stages AND correct conclusion "large bottle is best value for money" 18.(a) 366 ÷ (1+3) × 3 (£)274.5(0) 18.(b) 3 : 5 18.2 B1 for an answer of 6 : 10 oe SC1 for an answer of 3 : 2, (from halving not doubling and obtaining 6 : 4) or a final answer of doubling an	Method of comparison e.g. per 25ml, ml per penny or similar Correctly evaluated calculations for at least two of the three sizes AND appropriate conclusion OR Correctly evaluated calculations that should		Ignore incorrect units 3000 ml 25 ml 100 ml per p ml per £ 200 ml £14.70 12.25p 49p 2.04 ml 204(.0) ml 375 ml £14.40 12p 48p 2.08 ml 208(.3) ml
18.(a) 366 ÷ (1+3) × 3 (£)274.5(0) 18.(b) 3 : 5 B2 B1 for an answer of 6 : 10 oe SC1 for an answer of 3 : 2, (from halving not doubling and obtaining 6 : 4) or a final answer of	sizes, may be different comparisons at different stages AND correct conclusion		are required or allow no units given. Comparison of small/med and med/large is comparison of all three. Comparison of small/med and small/large is not a
366 ÷ (1+3) × 3 (£)274.5(0) M1 18.(b) If M0 award SC1 for sight of (£)91.5(0) 3:5 B2 B1 for an answer of 6: 10 oe SC1 for an answer of 3: 2, (from halving not doubling and obtaining 6: 4) or a final answer of		(3)	
(4)	366 ÷ (1+3) × 3 (£)274.5(0) 18.(b)	A1 B2	B1 for an answer of 6 : 10 oe SC1 for an answer of 3 : 2, (from halving not

22 -1, 0, 1, 2 B2 B1 -2 \leq n < 3 or -2, -1, 0, 1, 2, 3 or -1, 0, 1, 2 or -4, -3, -2, -1, 0, 1, 2 or -4, -3, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4	40 (-)	I	
19.(b) A straight line with an empty circle at 23 and a solid circle at 28.	19.(a) -2, -1, 0, 1, 2	B2	
A straight line with an empty circle at 23 and a solid circle at 28. Comparison of the interior angle of the heptagon = 180 - 360 + 7 Comparison of the heptagon = 180 - 360 + 7 Comparison of the heptagon = 180 - 360 + 7 Comparison of the heptagon = 180 - 360 + 7 Comparison of the heptagon = 180 - 360 + 7 Comparison of the heptagon = 180 - 360 + 7 Comparison of the heptagon of the	10 /h)		or –4, –3, –2, –1, u, 1, 2, 3, 4, 5 or -2 -1 1 2
Carrell Carr	A straight line with an empty circle at 23	B2	position but incorrectly shaded.
(4) (Interior angle of the heptagon =) 180 – 360 + 7 OR (7 × 180 – 360) + 7 CR (7 × 180 – 360) + 7 (Inique angle in triangle =) (360 – 90 – 90 – 128.6 e) 51.4(28°) Alternative method 1 working from 64.3 (Unique angle in triangle =) (360 – 90 – 90 – 51.4) Alternative method 1 working from 64.3 (Unique angle of the heptagon =) (360 – 90 – 90 – 51.4) En (Interior angle of the heptagon =) (360 – 90 – 90 – 51.4) B1 F7 'their 180 – 64.3 – 64.3' Only awarded if this is clearly the interior angle of the heptagon Interior angle of the heptagon =) (Interior angle of			
20* (Interior angle of the heptagon =) 180 - 360 + 7 OR (7 - 2) × 180 + 7 OR (7 - 2) × 180 + 7 OR (7 - 2) × 180 + 7 OR (7 × 180 - 360) + 7 = 128.6(°) or 128.57()(°) (Unique angle in triangle =) (360 - 90 - 90 - 128.6 =) 51.4(28°) B1 May be seen on diagram. F1 'their derived 128.6' May be seen on diagram. F1 'their derived 128.6' May be seen on diagram. F1 'their derived 128.6' May be seen on diagram. F1 'their derived 128.6' May be seen on diagram. F2 'their derived 128.6' May be seen on diagram. F3 'their derived 128.6' May be seen on diagram. F2 'their derived 128.6' May be seen on diagram. F3 'their derived 128.6' May be seen on diagram. F3 'their derived 128.6' May be seen on diagram. F4 'their derived 128.6' May be seen on diagram. F4 'their derived 128.6' May be seen on diagram. F4 'their derived 128.6' May be seen on diagram. F4 'their derived 128.6' May be seen on diagram. F5 'their derived 128.6' May be seen on diagram. F6 'their derived 128.6' May be seen on diagram. F7 'their 180 - 64.3 - 64.3' Only awarded if this is clearly the interior angle of the heptagon M1 M0 for 'their 128.6 × 7' = 900(.2) alone M1 M0 for 'their 128.6 × 7' = 900(.2) alone M1 M0 for 'their 128.6 × 7' = 900(.2) alone M1 M1 M1 M2 M2 M2 M3 M3 M3 M4 M3 M4 M3 M4 M4	20 21 22 23 24 25 26 27 28 29	(4)	
(Interior angle of the heptagon =) 180 – 360 + 7 OR (7 - 2) × 180 + 7 OR (7 × 180 – 360) + 7 (Unique angle in triangle =) (360 – 90 – 90 – 128.6 =) 51.4(28°) Working to show that x = 64.3 to 1 d.p. (180 – 51.4(28)) + 2 = 64.285 to 64.3 B1 Alternative method 1 working from 64.3 (Unique angle in triangle =) (360 - 90 - 90 - 51.4) B1 Alternative method 1 working from 64.3 (Unique angle of the heptagon =) (360 - 90 - 90 - 51.4) B1 Alternative angle of the heptagon =) 180 – (360 + 7) OR (7 ~ 2) × 180 + 7 OR (7 × 180 – 360) + 7 = 128.6(°) or 128.57()(°) Alternative method 1a for final 2 marks (Sum of the interior angles of a heptagon=) (7 – 2) × 180 . e AND 128.6 × 7 900 A1 Alternative method 2 using exterior angles Exterior angle (of the heptagon) = 360 + 7 = 51.4(28°) M1 M2 M4 M5 for 'their 128.6 × 7' = 900(.2) alone M6 M7 M6 for 'their 128.6 × 7' = 900(.2) alone M7 Allow for 900 and 900.2 M6 M6 M7 M8 M8 M8 M8 M8 M9 be seen on diagram. F7 'their derived 128.6' May be seen on diagram. F7 'their derived 51.4(28) F7 Their derived 128.6' May be seen on diagram. F7 Their derived 128.6' May be seen on diagram. F7 Their derived 51.4(28)	20*	(4)	
= 128.6(°) or 128.57()(°) (360 – 90 – 90 – 128.6 =) 51.4(28°) Working to show that x = 64.3 to 1 d.p. (180 – 51.4(28)) + 2 = 64.285 to 64.3 B1 CAO Alternative method 1 working from 64.3 (Unique angle in triangle =) (180 – 64.3 – 64.3) = 51.4 (Interior angle of the heptagon =) (360 - 90 - 90 - 51.4) = 128.6 (Interior angle of the heptagon =) (360 + 7) OR (7 ~ 180 – 360) + 7 = 128.6(°) or 128.57()(°) A1 Alternative method 1a for final 2 marks (Sum of the interior angles of a heptagon=) (7 – 2) × 180 o.e AND 128.6 × 7 900 Alternative method 2 using exterior angles Exterior angle (of the heptagon) = 360 + 7 = 51.4(28°) A1 (Unique angle in triangle =) (360 – 90 – 90 – (180 – 51.4(28°))) = 51.4(28°) Working to show that (x =) (180 – 51.4(28)) + 2 = 64.3 B1 CAO Alternative descendent diagram. FT 'their derived 128.6' (May be seen on diagram. FT 'their derived 128.6' (May be seen on diagram. FT 'their derived 128.6' (May be seen on diagram. FT 'their derived 51.4(28)	(Interior angle of the heptagon =) 180 – 360 ÷ 7 OR (7 – 2) × 180 ÷ 7	M1	
(360-90-90-128.6=) $51.4(28°)$ B1 May be seen on diagram. Working to show that $x = 64.3$ to 1 d.p. ($180-51.4(28°)$) $+ 2 = 64.285$ to 64.3 B1 CAO Alternative method 1 working from 64.3 (Unique angle in triangle =) ($180-64.3-64.3$) $= 51.4$ (Interior angle of the heptagon =) ($360-90-90-51.4$) $= 128.6$ B1 FT 'their $180-64.3-64.3$ ' Only awarded if this is clearly the interior angle of the heptagon $= 128.6$ (Interior angle of the heptagon $= 128.6$) $= 128.6$ ($= 128.6$) or $= 128.6$ ($=$	=128.6(°) or 128.57()(°)	A1	
(180 - 51.4(28)) + 2 = 64.285 to 64.3 B1 CAO Alternative method 1 working from 64.3 (Unique angle in triangle =)		В1	
$ (Unique angle in triangle =) \\ (180 - 64.3 - 64.3) = 51.4 \\ (Interior angle of the heptagon =) \\ (360 - 90 - 90 - 51.4) = 128.6 \\ (Interior angle of the heptagon =) \\ 180 - (360 + 7) \\ OR (7 - 2) \times 180 + 7 \\ OR (7 \times 180 - 360) + 7 \\ = 128.6(°) \text{ or } 128.57()(°) \\ A1 \\ \hline Alternative method 1a for final 2 marks \\ (Sum of the interior angles of a heptagon=) \\ (7 - 2) \times 180 \text{ o.e} \\ AND 128.6 \times 7 \\ 900 \\ Alternative method 2 using exterior angles \\ Exterior angle (of the heptagon) = \\ 360 + 7 \\ = 51.4(28°) \\ \hline Working to show that \\ (x =) (180 - 51.4(28)) + 2 = 64.3 \\ \hline B1 \\ FT 'their 180 - 64.3 - 64.3' \\ Only awarded if this is clearly the interior angle of the heptagon M1 \\ M1 \\ M2 \\ M3 \\ M4 \\ M5 \\ M6 \\ M6 \\ M6 \\ M6 \\ M6 \\ M6 \\ M6$		B1	CAO
$ (Unique angle in triangle =) \\ (180 - 64.3 - 64.3) = 51.4 \\ (Interior angle of the heptagon =) \\ (360 - 90 - 90 - 51.4) = 128.6 \\ (Interior angle of the heptagon =) \\ 180 - (360 + 7) \\ OR (7 - 2) \times 180 + 7 \\ OR (7 \times 180 - 360) + 7 \\ = 128.6(°) \text{ or } 128.57()(°) \\ A1 \\ \hline Alternative method 1a for final 2 marks \\ (Sum of the interior angles of a heptagon=) \\ (7 - 2) \times 180 \text{ o.e} \\ AND 128.6 \times 7 \\ 900 \\ Alternative method 2 using exterior angles \\ Exterior angle (of the heptagon) = \\ 360 + 7 \\ = 51.4(28°) \\ \hline Working to show that \\ (x =) (180 - 51.4(28)) + 2 = 64.3 \\ \hline B1 \\ FT 'their 180 - 64.3 - 64.3' \\ Only awarded if this is clearly the interior angle of the heptagon M1 \\ M1 \\ M2 \\ M3 \\ M4 \\ M5 \\ M6 \\ M6 \\ M6 \\ M6 \\ M6 \\ M6 \\ M6$	Alternative method 1 working from 64.3		
(Interior angle of the heptagon =) $(360 - 90 - 90 - 51.4)$ $= 128.6$ B1 FT 'their $180 - 64.3 - 64.3$ ' Only awarded if this is clearly the interior angle of the heptagon $(180 - 10)$ $(180 - 90 - 90 - 51.4)$ $(180 - 10)$ $(180 - 10)$ $(180 - 10)$ $(180 - 10)$ $(180 - 10)$ $(180 - 51.4(28))$ <td>(Unique angle in triangle =)</td> <td></td> <td></td>	(Unique angle in triangle =)		
$ (360 - 90 - 51.4) = 128.6 $ (Interior angle of the heptagon =) $ (180 - (360 + 7) $ (OR $(7 - 2) \times 180 + 7$		B1	FT 4hoir 190 642 642
		В1	Only awarded if this is clearly the interior angle of
Alternative method 1a for final 2 marks (Sum of the interior angles of a heptagon=) (7 - 2) × 180 o.e AND 128.6 × 7 900 A1 Allow for 'their 128.6 × 7' = 900(.2) alone A1 Allow for 900 and 900.2 Alternative method 2 using exterior angles Exterior angle (of the heptagon) = $360 \div 7$ $= 51.4(28°)$ A1 (Unique angle in triangle =) (360 - 90 - 90 - (180 - 51.4(28°))) $= 51.4(28°)$ Working to show that (x =) (180 - 51.4(28)) ÷ 2 = 64.3 A1 Mo for 'their 128.6 × 7' = 900(.2) alone M1 Method ror 900 and 900.2 May be seen on diagram. FT 'their derived 51.4(28) May be seen on diagram. FT 'their derived 51.4(28)	180 – (360 ÷ 7) OR (7 – 2) × 180 ÷ 7	М1	
(Sum of the interior angles of a heptagon=) $(7-2) \times 180$ o.e AND 128.6 \times 7M1M0 for 'their 128.6 \times 7' = 900(.2) alone900A1Allow for 900 and 900.2Alternative method 2 using exterior angles Exterior angle (of the heptagon) = $360 \div 7$ M1Method must be seen(Unique angle in triangle =) $(360 - 90 - 90 - (180 - 51.4(28°)))$ $= 51.4(28°)$ May be seen on diagram. FT 'their derived 51.4(28)Working to show that $(x =)(180 - 51.4(28)) \div 2 = 64.3$ May be seen on diagram. B1May be seen on diagram. CAO		A1	
900A1Allow for 900 and 900.2Alternative method 2 using exterior angles Exterior angle (of the heptagon) = $360 \div 7$ M1Method must be seen $= 51.4(28°)$ A1(Unique angle in triangle =) $(360 - 90 - 90 - (180 - 51.4(28°)))$ $= 51.4(28°)$ May be seen on diagram. FT 'their derived $51.4(28)$ Working to show that $(x =) (180 - 51.4(28)) \div 2 = 64.3$ May be seen on diagram. B1May be seen on diagram. CAO	(Sum of the interior angles of a heptagon=) (7 – 2) × 180 o.e	M1	M0 for 'their 128.6 × 7' = 900(.2) alone
Alternative method 2 using exterior angles $Exterior$ angle (of the heptagon) = $360 \div 7$ $= 51.4(28°)$ M1 (Unique angle in triangle =) $(360 - 90 - 90 - (180 - 51.4(28°)))$ $= 51.4(28°)$ Working to show that $(x =) (180 - 51.4(28)) \div 2 = 64.3$ M1 Method must be seen May be seen on diagram. FT 'their derived $51.4(28)$ May be seen on diagram. CAO	{	A1	Allow for 900 and 900 2
360 ÷ 7 = 51.4(28°) (Unique angle in triangle =) (360 - 90 - 90 - (180 - 51.4(28°))) = 51.4(28°) Working to show that (x =) (180 - 51.4(28)) ÷ 2 = 64.3 M1 Method must be seen May be seen on diagram. FT 'their derived 51.4(28) May be seen on diagram. CAO	Alternative method 2 using exterior angles		7 mow 161 000 and 000.E
(Unique angle in triangle =) (360 - 90 - 90 - (180 - 51.4(28°))) B1 FT 'their derived 51.4(28) Working to show that (x =) $(180 - 51.4(28))$ ÷ 2 = 64.3 B1 May be seen on diagram. Way be seen on diagram. CAO		М1	Method must be seen
(360 – 90 – (180 - 51.4(28°))) = 51.4(28°) Working to show that (x =) (180 – 51.4(28))÷ 2 = 64.3 B1 FT 'their derived 51.4(28) May be seen on diagram. CAO	= 51.4(28°)	A1	
(x =) (180 - 51.4(28))÷ 2 = 64.3 B1 CAO	(360 – 90 – 90 – (180 - 51.4(28°)))	B1	
		B1	
(4)		(4)	

21.* (1 – 0.8(0)) × 40 OR 40 – 0.8(0) × 40 OR (0.15 + 0.05) × 40 OR 0.15 × 40 + 0.05 × 40	M2	M1 for sight of one of the following: • 1 - 0.8(0) • 0.15 + 0.05 • 0.2(0) • 0.8(0) × 40 • 32 • 0.15 × 40 • 0.05 × 40
8	A1	CAO
20 *	(3)	
$(h =) \frac{500}{\pi \times 3.5^2} = 500/38.4(8)$ $(h =) 12.98() to 13 (cm)$ $23.(a)(i)$ Any valid reason e.g. '10 years is too far ahead to predict.' 'the paper might not be produced if sales continue to fall' 'the change each time is not consistent.'	M2 A1 (3) B1	M1 for $500 = \pi \times 3.5^2 \times h$ CAO not from incorrect working If no marks award SC1 for an answer of: 25.97 to $26(.0)$ from $500 = \frac{1}{2}\pi \times 3.5^2 \times h$ OR 38.96 to $39(.0)$ from $500 = \frac{1}{3}\pi \times 3.5^2 \times h$ If a satisfactory reason is given ignore further spurious comments. Allow e.g. 'because the sales may not follow the pattern of the graph.' 'there is not an equal; drop in numbers sold every 5 years' 'it's too far in the future, we can't tell' 'it could increase instead of decrease' 'more people may read the paper on the internet' Do not allow statements that do not relate to the graph e.g. 'there might be more or less than 10000 sold in
(a)(ii)		2025' as no reference to the trend 'we can't tell' as no reference to time or trend
$(100 \times) \frac{62(000) - 26(000)}{62(000)}$	M1	
OR $(100 \times)0.58()$ or $(100 \times)(1 - \frac{26(000)}{62(000)})$ OR $(100 \times)(1 - 0.419)$ or $(100 \times)(1 - 0.42)$		
58(.06%) or 58.1(%)	A1	If no marks award SC1 for an answer of 41.9(3%), allow 42(%) from evaluation of 26000/62000 × 100 but not from trials.
(b) 52000000 ÷ (16 + 9) × 16 33 280 000	M1 A1 (5)	Allow a place value slip in 52 000 000 for M1 only Allow 33 000 000 and 33 300 000

	1	T
24.* 5x + 40 = 6x + 20 x = 20	M1 A1	Allow for 5 × 20 + 40 = 6 × 20 + 20 which may be seen in stages
x = 20 $5 \times 20 + 40 + y + 35 = 180 \text{ OR}$ $6 \times 20 + 20 + y + 35 = 180 \text{ OR}$ $5 \times 20 + 40 + 2(y + 35) + 6 \times 20 + 20 = 360$	M2	FT 'their 20' for possible M2 provided previous M1 awarded. May be seen in stages.
		M1 for a correct equation 5x + 40 + y + 35 = 180 or 6x + 20 + y + 35 = 180 or 5x + 40 + y + 35 + 6x + 20 + y + 35 = 360
<i>y</i> = 5	A1	CAO
24.* Alternative method (using simultaneous equations) Writes two correct equations in x and y	M2	M1 for each correct equation
or $5x + 40 + y + 35 = 180$ or $5x + 40 + y + 35 = 180$ or $5x + 40 + y + 35 + 6x + 20 + y + 35 = 360$	IVIZ	M1 for each correct equation May be simplified
Method to eliminate variable, e.g. equal coefficients and method to find second variable	m1	Allow one error in one term but not with equal coefficients
Finds the value of the first variable	A1	CAO x = 20 OR y= 5
Second variable	A1	FT 'their first variable'
	(5)	
25.*	(-)	
Correct perpendicular bisector construction with appropriate arcs	B2	B1 for perpendicular bisector within tolerance (± 2°) without arcs or with invalid arcs or for a correct pair of arcs that intersect twice.
Correct angle bisector construction of XOY with appropriate arcs	B2	B1 for angle bisector within tolerance (± 2°) without arcs or with invalid arcs or for a correct pair of arcs
Correct point indicated	B1	FT provided at least B1, B1 awarded; may be implied by intersecting loci
	(5)	
26.*(a) $(x^2 =) 11.3^2 - 8.6^2$ $x^2 = 53.73 \text{ or } (x =) \sqrt{53.73}$	M1 A1	
(x =) 7.3(3 cm)	A1	FT from M1 for the correctly evaluated square root of 'their 53.73' provided x < 11.3
(b)		If no marks, award SC2 for an answer of 7.3(3cm) seen from use of 8.62 – 11.32
$cos(y) = 8.6 \div 13.5$ $(y =) cos^{-1}(8.6 \div 13.5)$	M1 m1 A1	Accept any equivalent full method
(y =) 50(.4°)	(6)	