

GCSE MARKING SCHEME

AUTUMN 2019

GCSE
MATHEMATICS – COMPONENT 2 (FOUNDATION TIER)
C300U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE MATHEMATICS

COMPONENT 2 - FOUNDATION TIER

AUTUMN 2019 MARK SCHEME

Eduqas Autumn 2019 C2 Foundation Tier		Comments
1(a) (67 × 5 =) 335(p) or (£)3.35	B1	If units are seen they must be correct. Allow £3.35p.
1(b) £1.01 - £0.67	M1	
= (£)0.34 or 34(p)	A1	If units are seen, they must be correct. Allow £0.34p.
1(c) 3 × 2.95 + 2 × 5.75	M1	
= (£)20.35	A1	
	(-)	If no marks awarded, SC1 for (£)8.85 and (£)11.50 or for 885(p) and 1150(p) seen.
	(5)	
2(a)(i) Radius	B2	B2 for all three correct
(ii) Chord		B1 for any two correct
(iii) Parallel 2(b) Draws an accurate triangle, with		The triangle must be 'closed' to gain B2. Candidates
angle BAC = 90° ± 2° and line AC =		are not expected to use compasses.
6.5cm ± 0.2cm	B2	Award B1 if one error, e.g. line or angle out of
0.00m ± 0.20m		tolerance or BC not drawn.
	(4)	
3(a) Cube	B1	
3(b) B	B1	
	(2)	
4(a) H correctly positioned on the	B1	
diagram	D.4	ET (1 : 1)
(3, 2)	B1	FT 'their H'
4(b) J correctly positioned on the	B1	
diagram		
(-2, 6)	B1	FT 'their J', provided at least one negative coordinate.
	(4)	
5(a) 11.8 × 3.2	M1	
= 37.76		
= 40 (m ²)	A2	If A2 not awarded, award A1 for 37.76(m²)
5(b) Indicates 'No' and explains	E1	
e.g. 'needs 5 tins'	(4)	Or equivalent explanations such as 'needs extra 0.4'
	(4)	

0(-) (00 40 50 1/2)		
6(a) (£8.12 × 52 weeks) = (£)422.24	B1	
- (£)422.24	ы	
6(b)(i) 4 (weeks) × 7.35	M1	
= (£)29.4(0)	A1	
(2)20.4(0)	/ \	
6(b)(ii) Valid reason e.g.	E1	Accept 'she needs to multiply by 52' or
'she needs to multiply by 13'	L'	'February only has 4 weeks'
there are more than 48 weeks in the		rebluary only has 4 weeks
year'		
'some months are longer than February'		
'February has less days than other		
months'		
6(c) 28 + 15. (43 days)	M1	
× (0.)95	M1	FT 'their 28 + 15' provided >31
= (£)40.85 or 4085(p) AND	A1	FT 'their 4085(p)'
Indication that he can afford the ticket.		If no marks, award SC1 for either 28 x 0.95 or 15 x
e.g. 'yes >40'	(7)	0.95
$7(a)(i) (23 \times (£)5.90) = (£)135.7(0)$	B1	
7(a)(ii) 218.30 ÷ 5.90	M1	FT 'their 5.90' used in (i) provided that it is one of the
		rates from the table.
= 37 (hours)	A1	Accept embedded answers
,		·
7(b) 32 × 7.38 + 25	M1	
= (£)261.16	A1	
	(5)	
	(0)	
8(a)(i) (dog) 16 AND (Bird) 12 completed	B2	B1 for 16 or 12 or for any indication that the vertical
into the table.		axis is 2 pets to each square.
into the table.		and to 2 pote to oddin equal of
Draws a bar with height 4 squares and	B1	
width 2 squares.	-	
Width 2 Squares.		
8(a)(ii) Dog	B1	
	-	
8(b)(i) 75°	B2	B1 for sight of 360 × 10 ÷ 48 or 7.5 or 0.2083(3) or
- \- /\-/ · -		equivalent (e.g. 20.83%)
8(b)(ii) 17/48 or equivalent	B1	ISW
5(5)(1) 11/10 of oquivalent		
	(7)	
	(')	
$O(\alpha)(i)$ $3\alpha + 7$ or equivalent	B2	P1 for either 7 + or 2 a +
9(a)(i) $3a+7$ or equivalent	کد	B1 for either 7 \pm or $3a \pm$
	D0	2
9(a)(ii) $3x + 6$	B2	B1 for either $3x + \dots$ or $\dots + 6$
9(b)(i) (x =) 9	B1	Accept embedded answers
9(b)(ii) (<i>y</i> =) 42	B1	Accept embedded answers
9(c) -2 + 6 x 3	M1	
=16	A1	
	(8)	
	<u></u>	

10(a) 37(%)	B1	
10(b) Eight million, one hundred thousand (and) forty three	B1	CAO
10(c) 48% of 3650 (=1752) 1752 × 3400 = (£)5 956 800	M1 M1 A1	FT 'their 1752' CAO
10(d) 1103/ ₁₉₆₀ or 27575/ ₄₉₀₀₀ ISW	B1	Or equivalent fraction
	(6)	
11(a) 2.5	B1	
11(b) 396 (litres)	B2	B1 for 264 x 99 ÷ 66 or 264 + ½ of 264 or equivalent
11(c) 5 + 3 × 5 + 3 × 5 ÷ 2 27.5 × 2 × 4.95 (£) 272.25	M1 M1 A1	May be implied by sight of 27.5 (litres) FT 'their derived 27.5' CAO If no marks, award SC1 for sight of 15 and 7.5, or SC2 for 2 x 4.95 (9.90) x 5 (=49.50) and 9.90 x 15 (=148.50) and 9.90 x 7.5 (=74.25)
12(a)(i) 72(°)	B1	
12(a)(ii) 37(°)	B1	
12(a)(iii) 180 – (72 + 72) = 36(°)	M1 A1	
12(b) (Isosceles) Trapezium	B1 (5)	

13(a) $3 \times 48 \div 4$ (36) $+ 4 \times 72 \div 8 \times 5$ (180) (36 + 180) = 216 (Total train capacity is) $1 \times 48 + 4 \times 72$ = 336	M1 M1 A1 M1 A1	Watch out for alternative methods referring to seats empty. This is 12 seats instead of 36, 108 seats instead of 180 and 48 seats instead of 216. Must state that these are empty seats.
(2/3 of 336 =) 224 or (216/336 =) 0.64() or 64(.28)% AND indicates that the train manager is not correct	B2	FT 'their derived 336' B1 for sight of ² / ₃ of 336 or 216/336 or 224 or 0.64() or 64(.28)% Note that a common error is to use only 1 standard carriage instead of 4. In this case, their 336 would be 120, Their 224 would be 80, Their 216 would be 81, Therefore, the train manager would be CORRECT. Candidates can get B1 for these numbers seen, and B2 if their decision is correct.
13(b)(i) Time = 100 ÷ 80 (= 1.25 hrs)	M1	
11:50 + 1hr 15 mins	m1	FT 'their 100 ÷ 80' Allow for 1.25 hours or 1 hr 25 mins
(Arrival time) 13(:)05 or 1(:)05 p.m.	A1	CAO. Allow 1(:)05 or 13(:)05(pm)
13(b)(ii) Affect, e.g. 'The arrival time would be later'	E1 (11)	Accept, e.g. 'the journey would take longer' or 'it would be later' but do not accept 'it would be longer'
14(a) 1420 × 1.2 or equivalent	M1	Allow for selling price + fees calculated correctly.
0.0125 × (£)146000 or equivalent	M1	
Blue Blocks (£)1704 AND Sell 'em Fast (£)1825 AND choice of Blue Blocks	A2	A1 for sight of either (Blue Blocks £)1704 or (Sell 'em Fast £)1825 Difference of £121 indicates correct method.
14(b) (0 × 125 000 +) 0.02 × 125 000 + 0.05 × (380 000 – 125 000 – 125 000) or equivalent full method (= £2500 + £6500)	M2	M1 for sight of working with 0.05 × (380 000 – 125 000 – 125 000) or 5% of the additional cost of the house, 0.05 × (380 000 – 275 000)
(Stamp duty =£) 9000 AND indicates incorrect	A1 (7)	

15(a) $8x + 24y + 32$	В3	Accept any correct factorised expression
		B2 for a correct but unsimplified answer, e.g.
		2(4x + 8) + 2(12y + 8) or $x + 4 + 12y + 8 + 4x + 8 + 3y + 4 + 3x + 4 + 9y + 4$
		B2 for a correctly simplified answer with an error in one of the 'missing' sides
		B1 for an unsimplified answer with an error in one of
		the 'missing' sides, or sight of 3x + 4 AND 9y + 4 Or correctly simplified expression with one 'missing'
		side omitted.
15(b) 8	B1	Strictly FT 'their perimeter' providing a multiple > 1 exists
	(4)	
16*. 500 × 1.034 ²⁵	M1	Or equivalent full method
= (£) 1153.41	A2	Must be to the nearest penny A1 for (£) 1153.40(9)
17* Cight of	(3)	, , , ,
17*. Sight of x + 5 + x - 10 + x - 75 (+125)	B1	
3x - 80 + 125 = 360	B1	Implies previous B1
or 3x - 80 = 360 - 125		FT 'their $x + 5 + x - 10 + x - 75$ ' provided it contains at
or $3x = 315$		least 2 of the appropriate angle terms, simplified and correctly equated
x = 105	B1	CAO. An answer 'x = 105' without previous equation is awarded B0
	(3)	-
18*. 64 km/h is 64 × 50 ÷ 80 40 (mph)	M1 A1	CAO
12 × 1.3 + 24 × 1.2 or for sight of 15.6 and 28.8	M1	FT 'their mph' for one of: • intention to calculate 'a × 1.3 + b × 1.2'
5. 15. Signit of 15.5 and 25.0		 intention to calculate a × 1.3 + b × 1.2 correctly evaluated 'a × 1.3 and b × 1.2'
		provided 'their b' > 'their a'
44.4 (m)	A1	Only FT for speeds used from the table
	(4)	
19*. 6x ² – 16x – 21x + 56	B2	B1 for any 2 terms correct
$6x^2 - 37x + 56$	B1	FT for equivalent level of difficulty, providing at least 3
	(3)	terms to consider and like terms to collect
20*(a) 2.6 (cm)	B1	
20*(b) Mid points 2, 3, 4, 5, 6	B1	
2 × 4 + 3 × 2 + 4 × 1 + 5 × 0 + 6 × 3	M1	FT 'their mid points' provided 4 lie within, including 'bounds', of the groups, allow 1 of the mid points is
. 40	m 4	outside the group
÷ 10 3.6 (cm)	m1 A1	
,		
20*(c) 5 × 4.7 + 23.9 ÷ 6	M1 m1	
7.9 (cm)	A1	
	(8)	1

21*(a) Sight of appropriate	B1	
measurements 0.8 (m) and 1.2 (m)		
Full method to find the correct	M1	FT 'their 2.5 – 1.7' and 'their 2.4 ÷ 2'
angle, e.g.	1411	The thom 2.0 The third thom 2.4 * 2
$\tan x = (0.8 / 1.2)$		
$(x =) tan^{-1} (0.8/1.2)$	m1	
33.69(°) or 33.7(°) or 34(°)	A1	15 1 11 10015
		If no marks, then award SC1 for an answer of 56(.3°) (or equivalent unrounded irrespective of any labelling
		on the diagram)
		on the diagram)
21*(b) 2.4 × 2.04 ÷ 1.7	M1	
or 2.5 × 2.04 ÷ 1.7		
2.88 (m) or 2.9 (m)	A1	
3 (m)	A1	
	(7)	
	()	
22*(a) Flour 70 × 102 ÷ 17	M1	
OR Sugar 10 × 102 ÷ 17		
Flour 420 (g)	A1	
Sugar 60 (g)	A1	If answer reversed, allow A1 only
- 1.g. 00 (g)	' ' '	and the second s
22*(b)2200 - 390 - 2 × 268(=1274)	B1	
1071 (100)		ET (1) : 0000 000 0 0001
1274 (× 100) or equivalent 2200	M1	FT 'their 2200 – 390 – 2 × 268'
2200		
57.91(%)	A2	CAO. A1 for 57.9(090%) or 58(%)
. ,		If no marks, award SC2 for an answer of 42.09(%)
	(7)	