GCSE MARKING SCHEME

AUTUMN 2017

GCSE
MATHEMATICS - COMPONENT 2 (FOUNDATION)
C300U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

5.	B1	Accept any indication

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& \text { 15. (a) (i) } 360-(135+45+60) \text { OR } 360-240 \\
\& \text { OR } 120 \\
\& 120 / 360 \text { or equivalent }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& Any simplification must be correct. If M0, award SC1 for a fraction with a denominator of 360 AND a numerator of 118 or 119 or 121 or 122. \\
\hline 15. (a) (ii) (\(1 / 3\) of \(1200=\)) 400 \& B1 \& FT 'their \({ }^{120} / 360\) ' \\
\hline \begin{tabular}{l}
15. (b) (i) Calculation of frequencies \\
Bike 150 , car 200 , bus 450 , walk 400 \\
Correctly drawn bar graph.
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{M} 1 \\
\& \mathrm{~A} 1 \\
\& \mathrm{~B} 2
\end{aligned}
\] \& \begin{tabular}{l}
Award M1 for angle/360 \(\times 1200\) OR Sight of 3 correct frequencies. \\
Fully correct bar chart will imply M1A1. \\
Award B1 for correct labelling of axes and scale. B1 for correct bar heights.
\end{tabular} \\
\hline 15. (b)(ii) One valid advantage or disadvantage, e.g. 'bar graph easier to read the frequency' or 'pie chart more difficult to read the frequency' or 'bar chart clearer' or 'the bar graph is easier to draw', or 'in the pie chart, it is easier to see the proportions of the 1200 students who use each type of travel'. \& \begin{tabular}{l}
E1 \\
(8)
\end{tabular} \& \\
\hline 16.(a) (i) Ratio 7:10 or 10:7 \& B1 \& \\
\hline \[
\begin{aligned}
\& \text { 16.(a)(ii) } 7 \times 6970 \div(7+10) \text { or } 10 \times 6970 \div(7+10) \\
\& \quad \text { lan }(£) 2870 \\
\& \text { Stacey }(£) 4100
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
Or equivalent. FT 'their 7:10' \\
If AOAO allow SC 1 for reversed answers
\end{tabular} \\
\hline 16.(b) Ellie has \(9 / 32\) or equivalent proper fraction. \& \begin{tabular}{l}
B2 \\
(6)
\end{tabular} \& Allow B1 for Lenny's share being 9/16 or Ellie's share being \(4.5 /{ }_{16}\) OR \(^{9} /(1+6+9) x^{1 / 2}\) \\
\hline \begin{tabular}{l}
17. Method to find unit cost e.g.
\[
\begin{aligned}
\& 185 \div 570(=0.32)(\mathrm{p} / \mathrm{g}) \\
\& 240 \div 700(=0.34)(\mathrm{p} / \mathrm{g})
\end{aligned}
\] \\
0.32, 0.34 AND ‘570 (g) better value’
\end{tabular} \& B2

B1

(3) \& | Award B1 for each. |
| :--- |
| Accept alternative convincing methods |
| e.g. $\begin{aligned} & 570 \div 185(=3.08)(\mathrm{g} / \mathrm{p}) \\ & 700 \div 240(=2.92)(\mathrm{g} / \mathrm{p}) \end{aligned}$ |
| OR working in £ OR comparing 100 g etc |
| FT their values provided at least B1 awarded and comparing equal masses or equal costs. |

\hline 18. (a) Correct point plotted to create a square. \& B1 \& The plots do not need to be joined.

\hline 18. (b)(i) 2 \& B1 \&

\hline 18. (b)(ii) Adds squares to the rectangle to create a correct shape with rotational symmetry of order 4 e.g. creates a 4×4 square. \& B1
(3) \&

\hline
\end{tabular}

$\text { 19. (a) } \begin{aligned} & 1 / 2(8 \times 5.5) \\ = & 22\left(\mathrm{~cm}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
19. (b) $(22 \times 4.5)=99\left(\mathrm{~cm}^{3}\right)$	B1	FT 'their 22' correctly evaluated.
19. (c) Explains that 50 mm is bigger than 4.5 cm , the other measurements have not changed so the volume must be bigger. Or equivalent.	E1 (4)	
20. (a) explaining that 0.8 is incorrect. e.g 'It is not 0.8 , it should be 0.08 ' or equivalent.	B1	Accept any indication that 0.8 is incorrect e.g. 'the first line is 198.4 not 1984'.
$\begin{aligned} & \text { 20. (b) } 2480 \times 0.08+2480 \text { OR } 198.4(0)+2480 \\ &=(£) 2678.4(0) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
20. (c) 1.08	B1 (4)	
21. (a) $165(\mathrm{~g})$ Butter $165(\mathrm{~g})$ Sugar $270(\mathrm{~g})$ Flour 6 tablespoons mincemeat	B2	B2 for all correct B1 for 3 correct or sight of 1.5 as scale factor.
$\begin{array}{rlc} \text { 21. (b) } 315 \div 180 & \text { or } & 315 \div 270 \\ \times 8 & \text { or } & \times 12 \\ & =14 \text { (servings) } \end{array}$	M1 M1 A1 (5)	CAO Alternative method:
22. Use of Pythagoras Theorem $7^{2}+12^{2}=$ (hypotenuse) 2 (Hypotenuse =) 13.89 (m) Conclusion stated or implied that he is not correct, e.g. 'Sid's walls do not meet at right angles' or equivalent.	M1 A1 E1 (3)	Only award E1 provided M1 previously awarded. Alternative method 1 : $7^{2}+12^{2}$ B1 193 AND $14^{2}=196$ No B1 Alternative method 2: $\begin{array}{ll} 14^{2}-12^{2}=196-144(=52) & \text { B1 } \\ 52 \text { AND } 7^{2}=49 & \text { B1 } \\ 52 \neq 49 \text {, so no. } & \text { E1 } \end{array}$
$23.2 \times 330 \div 15$ (£)44	M1 A1 (2)	For a full method although may be seen in stages

24.(a) 2	B1	
24.(b) 'Yes' selected or unambiguously implied AND a reason, e.g. 'Yes, $4+5$ ', 'Yes it is possible to score 9'	B1	Ignore further irrelevant statements
24(c) States or implies that the list to score 5 is incomplete, e.g. 'Ryan has missed 4+1 and 3+2 States or implies that number of ways of scoring 5 the number of outcomes is a correct method $4 / 20(=1 / 5)$	M1 M1 A1 (5)	Accept sight of $\quad \frac{4}{}$ 'their number of outcomes', provided 'their number of outcomes >10, or sight of $1 / 5$ ISW. Depends on M1, M1 previously awarded If no marks, allow SC1 for an answer of 2/20 or equivalent
25. 3000×1.025^{7} (£) $3566(.0572 \ldots$... (£)434	M1 A1 B1 (3)	Or equivalent full method. Use of 25% in the calculation is not a misread CAO Provided at least 6 years of correct calculations, with incorrect interpretation of the number of years, allow MR-1, then possible M1, A1 but B0
26.(a) Midpoints 2, 5, 8, 12 $2 \times 4+5 \times 14+8 \times 10+12 \times 2$ $\begin{aligned} & \div(.0666 \ldots \mathrm{~mm}) \end{aligned}$	B1 M1 m1 A1	FT 'their midpoints' provided these are at the bounds or within the groups $(8+70+80+24=182)$
26.(b) Explanation, e.g. 'Hightown is only an estimate', 'Hightown mean was calculated using midpoints', 'more of the Hightown results might be below the midpoints'	E1 (5)	Accept a suitable example
$\begin{aligned} \text { 27.(a) } 11 x-9 x=25+3 \\ 2 x=28 \text { or } x=28 / 2 \\ x=14 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	FT until ${ }^{\text {nd }}$ error
27.(b) $5 \mathrm{x}(\mathrm{x}+2)$	B2 (5)	B1 for a correct partially factorised answer, or $5 x(x \ldots)$ or $5 x(\ldots+2)$

28. Density $\quad \frac{1538}{4 / 3 \times} \quad\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ $7.86\left(\ldots \mathrm{~g} / \mathrm{cm}^{3}\right)$ or $7.87\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$ AND states 'iron'	M3	M2 for $1.538 \quad$ or with other place value error OR M1 for 'digits 1538' 'their volume' provided 'their volume' is dimensionally correct OR M1 for sight of $4 / 3 \times \pi \times 3.6^{3}$ CAO A1 for $7.86\left(\ldots\left(\mathrm{~g} / \mathrm{cm}^{3}\right)\right)$ or $7.87\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$
29.(a) $y=4-3 x$	B1	
29.(b) $y=2 x+4$	B2 (3)	B1 for $\mathrm{y}=2 \mathrm{x} \pm \ldots$ or $\mathrm{y}=\ldots \mathrm{x}+4$

